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Abstract 

A collection of closure schemes for eddy diffusivities κ, appropriate 

for isopycnal diffusion (Redi 1982) and stirring (Gent-McWilliams 

1990), are tested and evaluated in comparison to output from a high 

resolution regional ocean model. This study is supplementary to that 

of Eden et al. (2008), where the effect of various choices for κ in 

general circulation climate models were compared with 

climatological data. In order to obtain a viable diffusivity diagnosis 

(with positive diffusivities) directly from the resolved eddy fluxes, 

rotational components should be removed. For this we attempt the 

method proposed by Medvedev & Greatbatch (2004), which happens 

to cause unexpected rise to negative diffusivities. However, in 

contrast to many previous studies, a strong flux-gradient relationship 

between eddy fluxes and mean fields were found, affording positive κ. 

Taking divergences confirms a solid correlation, indicating that 

rotational fluxes actually did not thwart the raw diagnostics to a 

significant level in this experiment. The diagnostic is therefore taken 

to be a proper frame of reference for comparing the various closures 

for distributions of eddy diffusivity. These closures are generally 

found to produce reasonable, but lacking, approximations to the 

diagnosed distribution of κ. A Ferrari-Nikarushin--suppression 

(2010) is shown to yield small but noticeable improvements. Some of 

the proposed tuning parameters seem to overestimate the overall 

intensity of diffusivities. The closure of Visbeck et al. (1997) 

performs well in respect to depth averaged distribution of κ, but its 

depth invariance motivates for choices of other closures; our 

diagnosis assert to a depth decaying diffusivity, so we also suggest a 

modification to this closure. None of the closures appears to 

dominate in quality in all aspects, and should be chosen in 

accordance with the physical application.  
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Section 1:  Introduction 

 

The ocean is a system of vast dynamical complexity ranging over a large number of 

space-time scales, from the molecular scale to the large scale flow of the thermohaline 

circulation of the World Ocean. We face challenges of how to describe this system, 

both physically and then in turn how to express these physics on a discrete numerical 

grid. As we are privy to very limited information about the fluid and the huge 

diversity of processes therein, and due to the fact that our models to varying degree 

fail to resolve the smaller scale (turbulent) flow, a statistical approach of (Eulerian) 

averaged dynamics is necessary.  

 

The resulting averaged equations naturally contain less information than the original 

equations. Oceanographic literature has traditionally regarded large scale flow 

dynamics separately from dynamics on smaller scales, based on the hypothesis that 

there are little interaction between the two regimes. This is at best a questionable 

assumption, and does not hold for turbulent parts of the ocean (Griffies 2004). 

Unresolved turbulent flow can indeed impose a significant effect on the main 

(resolved) flow through non-linear interactions.  

 

In coarse resolution climate- and general circulation models, mesoscale eddies (10-

100km) are, in general, part of this unresolved, sub-grid scale (SGS) regime. SGS 

refers to dynamics taking place on spatial and/or temporal scales smaller than the 

discrete grid of the model. These eddies are shown to be the most energetic 

component of variability (e.g., Chelton et al., 2007) and a ubiquitous feature of the 

World Ocean (as confirmed by satellite observations increasing both in number and 

quality). Therefore it is imperative to consider and addressing these mesoscale/SGS 

dynamics in ocean climate models and coarse resolution models in general. This is 

done by parameterizing these processes, meaning, describing the net effect of 

unknown turbulent variables in terms of our resolved variables (also referred to as 

upscaling). To optimally achieve this, however, it is necessary to understand and 
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interpret eddy fluxes. This has for quite some time been, and still is, a field of intense 

research. 

 

Historically, a simple down-gradient diffusion with different coefficients in horizontal 

and vertical directions was used to describe the net effect of the SGS flows and to 

suppress numerical noise. This was later improved to neutral diffusion (Redi, 1982) 

before the GM scheme (Gent-McWiliams, 1990) was suggested to describe the 

previously neglected role of mesocsale eddies that exerts to restratify the ocean by 

flatting out isopycnals through a process called stirring (quasi-adiabatically 

transporting parcels around and to release available potential energy stored in the 

baroclinicity the system). Each of these concepts are described and explained in detail 

in Section 2. The strengths of such isopycnal diffusion and GM stirring are normally 

governed by the same parameter, κ, in which we also focus on in this study.  

 

One of the many challenges that present themselves in today‟s ocean modeling 

research is how to optimally set the size and distribution of this parameter. The 

original GM paper (1990), stated that the nature of the parameter κ itself was beyond 

the scope of the manuscript. Over the course of the years, however, many suggestions 

have been published. Visbeck et al. 1997 was among first to propose a method 

determining a coefficient that was horizontally varying based on flow dependent 

diagnostics of expected eddy activity
1
. In our study, the primary objective is to test 

and compare four different such closure schemes. In that regard, these pages can be 

considered a follow-up or a supplement to the paper of Eden et al. (2008). Our 

approach is more direct, however. Where they compared output from a climate model 

with the climatology of Levitus & Boyer (1994) we aim to diagnose or compare the 

diffusivity closures directly with processed output from our eddy resolving model. 

Thus we need not to worry about model based errors (dynamical algorithms, choices 

of boundary forcings, etc.)  or lacking climatology. On the other hand, our study is 

strictly (and merely) theoretical in nature and also face its own challenges and caveats. 

How to define and interpret eddy fluxes obtained directly from a high-resolution grid 

                                                 

1
 Similar flow-dependent diffusivities had already been proposed for atmospheric applications by Green (1970) 

and Stone (1972) 
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is not a trivial matter. And complications arise because these fluxes contain rotational 

components that do not affect the tracer equations (due to their non-divergence, that 

is, they bring in equally much tracer to a region as they remove), but still influence the 

variables used to compute the eddy diffusivities (e.g., Bryan et al., 1999; Eden et al., 

2006). This fact complicates the prospects of capturing physically meaningful results 

from a direct calculation. These issues have been affronted by many attempts to define 

(and remove) the rotational fluxes. A Helmholtz-decomposition may be used to 

separate a (sufficiently smooth) vector field into divergent and rotational parts (e.g., 

Lau & Wallace, 1979; Roberts & Marshall, 2000). However, such a decomposition 

depend on the choice of boundary conditions and is consequently not unique (Fox-

Kemper et al., 2003). Other studies have assumed the eddy variance equation and 

associate rotational fluxes with advection of variance (e.g., Marshall & Shutts 1981, 

Medvedev & Greatbatch 2004). In this study we attempt to utilize the method of 

Medvedev & Greatbatch (2004, hereafter referred to as MG), in an experiment similar 

to one earlier demonstrated by Eden et al., (2006), Eden (2007). Additionally, we 

attempt to sidestep the entire issue with rotational fluxes by considering the 

divergence of the eddy-diffusivity fluxes directly, compared with the divergence of 

the parameterization. By construction, the rotational fluxes vanish, but more 

derivatives may result in excessive noise that may obscure the signal we seek 

(Nakamura and Chao, 2000; Bryan et al., 1999; Tanaka et al., 2007).  

Earlier numerical studies report of little actual correlation between the eddy fluxes and 

the down-gradient assumption (also appearing in the skew flux formulation of GM, 

Section 2), an unsatisfactory trait that has generally been ascribed the complications 

caused by rotational fluxes (e.g, Rix and Willebrand, 1996; Roberts and Marshall, 

2000; Griesel et al., 2009). Here we find, with some averaging over many eddy scales 

(spatial smoothing), a rather clear correlation between the diagnosed eddy fluxes and 

the mean field gradient (down-gradient parameterization), regardless of rotational 

fluxes. 

In contrast to earlier studies on the topic (of computing diffusivities), almost 

exclusively done with geopotential coordinate models, we employ a terrain-following 

model called ROMS (Regional Ocean Modeling System). It is a modern code 

containing algorithms to minimize the pressure gradient error inherent in this branch 
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of models. Furthermore we use finer resolution (~1/15°) than similar studies, and 

focus on the Nordic Seas. Our simulation is conducted on a 4000∙2000 km domain on 

a 4 km grid, where bathymetry is included. The solution was integrated over seven 

years, where the last five years were utilized as analyzation period. No explicit 

horizontal viscosity/diffusion (other than numerical diffusion from the advection 

scheme) were needed to keep the solutions stable due to the high resolution. Low 

viscosity is necessary to retain the characteristics of the small scale flow we seek to 

define and parameterize. The simulation output data is a courtesy of the Norwegian 

Meteorological Institute (DNMI). 

 

The transcending goal with this research to expand or support our knowledge about 

mesoscale eddies, and in particular the magnitude and distribution of the adiabatic 

stirring and diffusion they evoke, and how this should be implemented into coarse-

grid climate models. This aim is motivated by the eddies‟ fundamental role in 

transport of tracers (like heat) in the upper water masses of the World Ocean, which 

may greatly exceed the tracer transport of the mean flow (Isachsen and Nøst, 

submitted paper) in certain regions
2
 and plays a significant role in the heat transport of 

the meridional overturning circulation. The heat capacity of the ocean is many orders 

larger than that of the atmosphere and is consequently the controlling factor in respect 

to long term climate evolution and forecasts. To have a solid understanding of the 

small scale representation in our ocean models, and in turn how it affects larger scales, 

becomes of primary importance if we are to obtain climate prognoses that maintain 

their physical integrity throughout centuries of integration and still yielding output 

that reflects the true and accurate future evolution of the water masses. 

 

In Section 2 we present the conceptual and mathematical formulations of isopycnal  

 

                                                 

2 Particularly in the Southern Ocean, where the mean flow is predominantly zonal and transports little heat 

poleward. 
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Figure 1.1; Potential temperature (colors) at 100m depth and sea ice (grey/white) distribution in winter 

2006, based on an 8 km model. Picture is borrowed from Aksenov et al., (2009). 

 

diffusion and GM stirring operators (first in (i) structure, then in (ii) magnitude). The 

concepts will be thoroughly explained for completeness and pedagogical value. The 

practical results we represent are mostly tied to item (ii), so seasoned readers may 

want to skip or skim through the first sub-Sections. Thereafter we discuss 

decompositions of fluxes and the method proposed by Medvedev & Greatbatch 2004, 

hereafter referred to as MG), and introduce the diffusivity closures that are to be 

evaluated. In Section 3 we discuss the ROMS model (the source model used to 

produce the output data the upcoming diagnostics are based on) and specifications/ 

configurations thereof. The various experiment set-ups and results are presented in 

detail in Section 4. Section 5 contains a final discussion and summaries. 

 



 

 

11 

 

  Section 2:  Theory 

 

As stated in Section 1, a stochastic approach is necessary because some dynamical 

scales cannot be resolved by discrete numerical ocean models. These physics must be 

parameterized, and we present here a common way of describing the SGS 

mathematically. Let   be an arbitrary tracer, which is transported by an advective flux 

vector           where   is the advective velocity, and a diffusive flux vector       

representing viscous molecular exchanges given as            , where    is a 

coefficient quantifying the strength of the friction. At an Eulerian point in space it is 

the divergence (convergence) that decreases (increases) the concentration of tracers. 

 

 
          (          )    (1)  

     

Where    is a shorthand notation for differentiation with respect to time,   is a 

specific source term affecting tendency which is otherwise irrelevant to the following 

discussion. The above fluxes also takes place in the momentum equation (assuming a 

hydrostatic Boussinesq fluid), 

 

 

 
          (          )   (   )   

  

 
 (2)  

    

Where   (        ),   the coriolis parameter and   the in situ pressure. 

Special characters denotes tensors, since   
         

 

The      and      molecular diffusive fluxes appearing in these equations usually 

take on an additional role as discussed next (diffusive flux is commonly referred to as 

viscosity or kinematic viscosity in association with momentum). 
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2.1  Diffusion as sub-grid scale closure 

Consider a two-dimensional standard numerical A-grid of equal spatial resolution. 

The value of the tracer, momentum or density obtained in one of these grid boxes 

must represent an average value of the tracer taken over the entire spatial square A, 

equaling    times   , as illustrated in Figure 1 Regarding time as a third dimension, 

we get the average of a space-time 'box', so that 

 

 
    

 

    
∫ ∫  

    

     

    

    

     

 (3)  

 

These averaged values inevitably brings with them information loss about sub-grid of 

the system we attempt to simulate. This problem becomes less dominant with higher 

resolution (smaller values of delta A and delta t), but a satisfactory resolution in this 

sense is unrealistic even for a limited area ocean model. Even then, numerical models 

on a discrete lattice, regardless of the resolution, may not be loyal to dynamics based 

on a continuum hypothesis.  

The averaged advective flux     
̅̅ ̅̅ ̅̅     ̅̅̅̅  then appearing in the governing tracer 

equation (and momentum equations) may, through Reynolds averaging, be 

decomposed into means and deviations from the mean. Striking out averages of 

deviations, we obtain the expression 

 

 
  ̅̅̅̅   ̅ ̅      ̅̅ ̅̅ ̅ (4)  

This introduces a new term to the (averaged) tracer equation so that, 

 

 
      (  )        (    )      ̅  (5)  

The variable  ̅ (and  ̅ as appearing in (5)) can be interpreted as the flow explicitly 

resolved and described by our model, and is the basis for the mean flow depicted in 

Figure 1. In contrast, the inconvenient correlation-term     ̅̅ ̅̅ ̅ is a vector of turbulent 

variables that we have no explicit knowledge of, and may be interpreted as turbulent 

eddy activity. Still, it describes important sub-grid scale processes with non-trivial 

effect on the mean flow. 

To parameterize, or upscale, this effect, we must describe it in terms of our resolved 
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variables (i.e., a stochastic approach as mentioned in Section 1). Figure 1.1 abstractly 

illustrates the unresolved turbulent movement that happens in between our finite 

discrete lattice. 

                         
Figure 2.1; Abstract illustration of a typical two-dimensional A-grid. Dots represents the 

exact position of the known variables, spaced Δx and Δy apart. The point value of variables, 

like tracers and momentum, must be interpreted to be the average within the containing 

square. That is, all we know is the mean of the grey scaled area, as exemplified in the lower 

left square. As a result, we only have information of the mean flow depicted as thick arrows, 

but cannot explicitly describe the smaller flow (depicted as curly random arrows). 

 

 

Theories of turbulence often start with analogies to movement of random walk 

particles (Reif, 1965) advecting tracers and momentum around arbitrarily. This means 

that even though the mean of all the displaced distances will always be close to and 

eventually converge to zero, the root-mean-square of the distances will increase by a 

factor proportional to the square root of time (Vallis, 2005). From an averaged 

perspective a huge number of particles, or advections, will statistically behave 

predictably (that is, a manner easy to describe mathematically), as tracers will be 

transported from regions of high to low concentration and thus manifest in the form of 

down-gradient diffusion. These are well tested ideas from statistical physics (Griffies, 

2004).  

 
Figure 2.2; Random movement of particles (or small scale advection) at a time T (left hand 

pane) and a later time T+ΔT (right hand pane). Considering a myriad of random walk 

particles (bottom pane) statistically removes all randomness from the system. Tracers are 

carried from areas of high concentration to areas of low concentration, a process called 

downgradient diffusion. This means a flux with magnitude oppositely proportional to the well-

defined gradient vector (which in this simplified case is     ).   
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These conclusions lead to 

 

 
                ̅̅ ̅̅ ̅ (6)  

  or in the three-dimensional case, 

 

 
         ̅̅ ̅̅ ̅        (7)  

Where the ∇-operator is the sum of derivatives in all three dimensions, and the 

coefficient k describes the efficiency of the diffusion process. 

This type of parameterization, commonly seen in association with theories of 

molecular diffusion of temperature (e.g., Fick 1855) in thermodynamics (illustrated by 

Figure 2.2), is totally analogous with the theory of SGS physics. Because of the 

mathematical and structural similarities (between fluxes      and     ), these 

different regimes of physics may be combined into a common diffusion operator 

accounting for both. The diffusion arising from the turbulent advective transport is far 

prevalent over the molecular viscous exchanges, however. Grids must be refined to 

the Kolmogorov scale (a few millimeters) for these effects to have identical order of 

magnitude (Griffies, 2004). Therefore, the molecular contribution is simply absorbed 

into the      term.  For this reason such downgradient SGS closures is referred to as 

enhanced diffusion. 

Papanicolaou and Pironneau (1981) showed that the analogy between the molecular 

diffusion and eddy diffusivity holds as long as there is a significantly large separation 

between the spatial and temporal scales of the eddies and the large-scale circulation, 

which is what we assume in ocean dynamics. 

It should be noted that this diffusion can be, in addition to a reasonable physical 

assumption, interpreted simply as a numerical necessity to suppress growth of 

variance in the solutions. With insufficient diffusion incorporated into the system, 

energy will cascade to smaller scales and ultimately pile up at grid scale (smallest 

'available' scale in the numerical system) increasing variance to unphysical levels. 

This is commonly referred to as numerical noise, something which may quickly lead 

to instability, even for implicitly timed models or models otherwise satisfying the 

CFL-condition (Røed, 2009). The diffusion or viscosity needs to dissipate this 

variance increase by smoothing out the fields. Numerical noise may in turn be 
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explained solely by the deficient information exchange between grid points, in a 

system originally formulated as a continuum. So the two interpretations could very 

well be two sides of the same coin. Nonetheless, we emphasize on the description of 

diffusion as averaged physics rather than solely as a happen-to-be numerical 

necessity. 

 

2.2  Structure of the parameterizations (i). 

 

When upscaling or employing a parameterization of the sub-grid scale processes, 

there are two main issues to consider. 

 

(i) The structure and form of the mixing processes, or “how it works”.  

(ii) The magnitude of the mixing, e.g., as a function of the mean flow, or 

“when (and how much) it works”. 

 

We will consider item (i) in this section and item (ii) in Section 2.3. The practical 

results of this study are mainly tied to (ii). However, we will also discuss item (i) 

for completeness. After all, it is an essential theoretical fundament for 

understanding the role of eddies and the parameter (κ) we seek in (ii). 

 

2.2.1 Anisotropic diffusion 

While the smallest micro scale turbulence and mixing may be well approximated by 

equation (7), transport at mesoscale and larger exhibits a substantial amount of 

anisotropy (Griffies, 2004), where mixing processes in the horizontal
 
is far more 

effective than vertical processes. This is due to the density stratification in the inner 

ocean. If a parcel is lifted (or depressed) from its resting position in a fully barotropic 

ocean with no horizontal density gradient, it will become less (or more) buoyant than 

its surroundings and be subject to a restoring force. In contrast, no such restoring force 

will appear when the parcel is shifted horizontally. Less resistance implies that more 
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effective mixing will happen in this direction. This prescribes the need to adjust the 

diffusion coefficient k to a parameter different in the vertical ( ) than in the horizontal 

( ). It is then formulated as, 

 

 
         ̅̅ ̅̅ ̅        (8)  

 

 where                              [
   
   
   

] 

    

Inserting (8) into the tracer equation (5), we arrive at the following expression. 

 

 

 
    ∇  (  )     ∇   (    )  ∇  (  ∇ ) (9)  

 

This kind of mixing was used throughout the 1970's until George Veronis pointed out 

a contributory reason for the inadequate simulation results of the Meridional 

Overturning Circulation in the Atlantic (as well as large unphysical downwellings) 

obtained at the time, and explained in a paper (Veronis, 1975) what was to be called 

the Veronis effect.  The problem was established to be that the large horizontal 

diffusion contained an unacceptable amount of diapycnal diffusion. 

 
 2.2.2 Isopycnal / neutral diffusion 

Consider the same basin as before, but include a significant amount of baroclinicity 

(tilting surfaces of constant potential density). If a parcel existing on one of these 

surfaces now is moved purely horizontally, the parcel will now be more buoyant than 

its surroundings and being forced upwards towards the density-surface it was 

originally resting on. The result of this is that turbulent mixing happens more 

effectively along isopycnals (Iselin, 1939). Or more specifically, but subtly, along 

Neutral surfaces (McDougall, 1987). (If the process is fully adiabatic, the parcel will 

stick to its isopycnal). This is also often referred to as lateral in the literature. It is 

however clear that the pure horizontal mixing used in models were ruthlessly crossing 

the relevant stratification. So to remedy this problem, it was suggested the diffusion 

tensor   must describe not vertical and horizontal, but instead isopycnal ( ) and 
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diapycnal ( ) diffusion. That is, 

 

 

  

 

         [
   
   
   

]   [
   
   
   

] (10)  

 

Where є is the ratio between the diffusivities in the orthogonal directions, usually a 

very small number. This must be described in a set of local orthonormal coordinates, 

where two unit vectors are spanning out the density surface (locally) and the third is 

orthogonal and normal to the surface. The unit vectors become, 

 

         ̂  
  

|  |
  ,            ̂  

    

  |  |
   ,         ̂    ̂     ̂   

 

And the Slope-vector S, defined by the ratio between the horizontal gradient and the 

vertical gradient, 

 

 

  

 

  (     )        
   

   
 (11)  

   

 

Figure 2.3; Schematic of two density surfaces ρ and ρ+Δρ and the basis vectors of the local 

orthonormal coordinates. The slope-vector is shown in blue. Note that the curvature is much 

exaggerated compared to most of the ocean, but isopycnals may take such a form near 

boundaries or convective areas, in which case the Small Slope Approximation breaks down.  

 

where ρ rho is the density of the water. A coordinate system with shifting axes is 

highly inconvenient base for a dynamical ocean model, so the new diffusion tensor 

         must be rotated from the orthonormal coordinates to the coordinate system 
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of the model, as derived by Redi (1982). We still assume geopotential coordinates 

here, but a similar process for terrain-following coordinates can be found in Røed, 

(2001). Following Redi (1982), we obtain, 

 

 
       [

          

            

      | | 
] (12)  

 

It is immediately apparent that the new diffusion tensor       is more complicated 

and contains off-diagonal terms. Fortunately, with the knowledge that isopycnal 

slopes in the interior ocean usually are much less than 1/100, we may assume   to be 

very small, so terms including factor    
may be neglected in the diffusivity tensor. 

This is called the small slope approximation. We then arrive at, 

 

 
       *

    

    

      | | 
+ (13)  

 

It should be noted that the Small Slope Approximation breaks down in turbulent 

domains such as boundary layers or convective areas where the isopycnals may climb 

rather steeply, if not entirely vertical.  

 

Using the new three-dimensional diffusion tensor, we may calculate the isopycnal 

diffusive flux vector appearing in equation (8), (9). 

 

 

 

                 

   (        )            (    )       
(14)  

 

Fluxes may be decomposed into a down-gradient component, associated with a 

symmetrical transport tensor S, and an along-gradient component, associated with an 

anti-symmetric transport tensor denoted A, so that, 

 

   
 

 
(    )                    

(15)  
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(    )             

 

where   denotes the transpose of the tensor. So far   has simply been a symmetric 

matrix describing downgradient diffusion, that is, until now    . The very different 

physical property
3
 of the anti-symmetric tensor A and its advective utility will be 

discussed next. 

 

2.2.3  The Gent-McWilliams Stirring Operator  

The GM stirring scheme parameterizing the effects of unresolved mesoscale eddies 

published by Gent-McWilliams in 1990 was rather revolutionary within the field of 

ocean climate modeling. The idea originated when Gent and Cane worked on a 

tropical model investigating El Ninõ effects during the late 80‟s (Gent, 2011). They 

made the approximation ρ=ρ(T) for the equation of state for seawater, ignoring 

density changes due to pressure and salinity. This was a reasonable approximation, 

because the non-linear equation of state is greatly dominated by temperature changes 

in warm waters of the tropics. When about to implement the well-established theory 

that mesoscale eddies mix tracers predominantly in neutral directions, they soon 

realized that it would have no effect; isolines of potential temperature would now 

coincide with that of potential density surfaces, and temperature cannot be diffused 

along lines of constant temperature. Seemingly something were lacking in the 

parameterization of mesoscale eddies, as they had no effect under these highly 

reasonable assumptions. Gent and McWilliams constructed a parameterization to 

compliment the isopycnal Redi-diffusion, called stirring, which reversibly and 

adiabatically rearranges fluid parcels around adiabatically (naturally) as defined by an 

anti-symmetric transport tensor. 

The GM scheme was based on the postulates that, 

1) Moments of the tracer (amount and variance) should be conserved, and 

buoyancy should not diffuse across its isolines. 

2) The stirring should release APE from the system, akin to baroclinic instability. 

                                                 

3 Keep in mind that diffusive processes dissipate variance whereas advective processes conserve variance. 
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The latter postulate is satisfied if the stirring coefficients increase with the slope of the 

isopycnals.  Gent et al. (1995) formulated a simple anti-symmetric transport tensor, 

 

 

   *

     

     

     
+   

(16)  

Where the coefficient   determines the strength of the reversible mixing. An 

associated stream function is found by,   

   (            ) 
(17)  

Because   is a stream function, its curl,    , yields the corresponding velocities, 

 

 
      (  )           ∇ (  )  (18)  

 

where κ is a stirring coefficient (note that this coefficient is sometimes referred to as 

thickness diffusivity, which is otherwise only the same under certain conditions.
4
 

 

S is the slope-vector as defined in Section 2.2.1. In words, this means that a local 

increase of the slope, resulting in a horizontal variation of density and thus a center of 

mass higher than equilibrium, will cause movement (an advection) to re-level this 

center of mass, as illustrated in Figure 4. 

 

According to Gent et al. (1995), it is the residual velocity, the sum of the resolved 

velocity  ̅ and the extra eddy induced velocity    that advects all the tracers in the 

governing equations of the model.  

     ∇  (  ̅      )   ∇  (  ∇ ) (19)  

 

                                                 

4
Principally in cases of flat bathymetry. GM stirring will flatten out isopycnals in the horizontal. 
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Figure 2.4; Vertical variation in thickness h. Eddies stir up and restratify the system by 

establishing an extra advection of magnitude        (  ). If the lower ρ-surface is tilted 

less than the upper, this is equivalent to thickness diffusion.  

 

As an alternative to this advection, Griffies (1998) suggested that this flux instead 

being described as a skew flux, or skewsion. Consider the eddy advective flux caused 

by an extra eddy induced three dimensional velocity   . This non-divergent velocity 

may be described through any stream function that satisfy       . Simple vector 

algebra can reform this expression to terms, 

 

 

       (   )  

                                          ∇  (  )⏟           ⏟     

                                             ROTATIONAL        SKEW 

(20)  

 

The terms on the right hand side are known as the rotational flux and the skew flux, 

respectively. Since the rotational flux is non-divergent because     (  )   , the 

divergences of the skew flux and the advective flux must be identical. This means that 

one may use either divergence to describe the evolution of tracers. The former is 

downgradient whereas the latter is across-gradient (along isolines, Figure 2.5). The 

along obvious because             (    )   . The skew flux thereby 

conserves variance, a trait shared by advection. Inserting the stream function (17) into 

the skew flux       (    ) and decomposing, we arrive at 

 

             (

   
         

        
)   

          (∇    )  

(21)  
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Note that if 𝝑 are taken to be potential density (or parallel to potential density), we 

may use (11) to eliminate the slope in the horizontal terms and find, 

 

 

     
                 ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅  

      
    (     )         ̅̅ ̅̅ ̅̅   

(22)  

 

Eq. (22) is central to this study. It is evident that the horizontal part of the GM skew 

flux acts as a simple Fickian diffusion down the horizontal gradient of  .   

For an arbitrary tracer, total transport flux is now given by the sum of the symmetrical 

and anti-symmetrical SGS transport components, the Redi-flux (14) and the GM skew 

flux (22) respectively. The total SGS mixing flux then becomes, 

 

 

         (   )         (   )     

  (    )      
(23)  

 

It should be noted that when stirring is identical to isopycnal diffusion, that is,    , 

the horizontal component reduces to a normal horizontal diffusion. This is a kinematic 

result that arrives from the exact cancellation of off-diagonal terms in the two mixing 

tensors S and A. Griffies (1998) points out that computing both processes (using the 

skew flux formulation) is numerically cheaper than computing each on its own, given 

that    . This common choice of identical isopycnal diffusion and eddy stirring 

strengths is mostly based on simplicity and convenience. However, Smith and 

Dukowhich (1997) provide arguments suggesting that this may also be physically 

reasonable. 

 

Despite the horizontal simplification granted by the skew flux approach, the more 

complicated vertical flux is a crucial piece of the GM parameterization to include in 

coarse resolution models to respect the underlying (quasi adiabatic) physical 

properties.  
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Figure 2.5; GM skew fluxes as seen in a zonal mean, arising from sloping isopycnals. The 

skew flux itself is neither upgradient or downgradient, but its horizotal component directed 

downgradient whereas the vertical component is upgradient5. The role of this upgradient flux 

is to lower the center of gravity (i.e., release APE).  

 

Eden et al. (2007) argues that the horizontal part of the skew flux, which is diffusive 

in character (parameter  ), should in turn have a skew counter-part that acts as an 

advection in the horizontal plane (parameter  ). The rationale was based on the 

appearance of prominent along-isopycnal eddy fluxes in regions of dominating mean 

flow, suggesting that an isotropic parameter is insufficient. Despite their emphasis on 

the relevance of this previously neglected part of the GM-parameterization, they do 

not seem to maintain the importance in a later paper (Eden, 2010). Simulations of 

energetic eddy-driven zonal jets showed that the physically relevant diffusivity indeed 

were predominantly downgradient and thus appropriate for isotropic stirring
6
 (i.e., 

single stirring parameter). 

 

To intuitively visualize the difference between the diffusive flux parameterization (the 

symmetric part) and the adiabatic stirring, i.e. the pseudo-advective skew flux (the 

anti-symmetric part), imagine a bowl of water with drops of dense concentration of 

red dye poured into the middle. If the mixing process were exclusively (fickian) 

diffusive in three dimensions, the dye would expand in a sphere turning pink as the 

red color thinned out. Meaning, the amount of dye in each parcel would even out, 

changing the properties of each parcel. On the other hand, if the mixing were 

exclusively a stirring, the parcels would keep their properties but would be rearranged 

                                                 

5 An upgradient (vertical) diffusion is unproblematic in terms of numerical stability as long as the net flux is not 

upgradient (Griffies, 1998). 
6 Note that the isotropy applies only to the horizontal component of the GM skew fluxes. The process is in general 

adiabatic, i.e., along neutral surfaces (local isopycnal surfaces). 
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and stretched into finer filaments; the dye would spread into thin swirls and streaks of 

red, but would not diffuse to pink. In principle, this result of the stirring could be 

reversed by advecting the parcels back to the original distribution
7
 and is therefore 

called a reversible process. The former (diffusive) process is irreversible as the dye 

cannot be “un-diffused” back into its original parcels or concentration. 

 

2.3  Magnitude of the parameterizations (ii) 

 

What is the effective strength of the eddy stirring processes? The original GM (1990) 

paper made no attempt to determine the magnitude or distribution of the coefficient  , 

taking it to be a topic of future research. And it still is, over 20 years later. Most 

climate models run in the first decade after GM‟s inception used constant values of 

diffusivities       1000     , as suggested as a rough approximation in the original 

GM (1990) paper. 

Visbeck et al. (1997) was among the first to suggest a flow dependent closure for the 

strength of the GM stirring parameter. The general idea was, as earlier seen in 

meteorology, to express the mixing coefficient in terms of an appropriate time and 

squared length scale (the units of diffusivity).  It could be evaluated as, 

      
  

 
                             ̅    

(24)  

approximating the eddy velocity to that of the mean flow. Here L is a typical eddy 

length scale and T is a characteristic eddy time scale. If we suppose that eddies are 

generated by baroclinic instability, it is natural to compare the mixing length to the 

Rossby radius of deformation,   or length of the baroclinic zone,   . The time scale 

would be associated with the growth rate of waves in Eady instability theory, i.e., the 

ratio of the Richardson number (a measure of baroclinic instability) and coriolis 

parameter. In coherence with instability theories (e.g., Eady 1949) , the early closures 

were depth-independent. However, observations affirm that eddy activity decreases 

                                                 

7 This can be shown in laboratory experiments with rotating laminar flow fluids. 
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with depth, and some closures respect this fact. 

There is a principal fact that diffusivities must be scaled with grid size; refining the 

grid requires reduction of SGS diffusivities (Section 2.1). But quite adversely, for 

refined grids, the Eady growth rate (eddy time scale, see 2.3.1) and in turn the 

diffusivity, rather increases because the model allows for more vigorous mean flows 

and stronger gradients (Griffies, 2004), normally causing closures to over-diagnose 

diffusivities. Therefore the model‟s local grid size, ∆, should also be considered in the 

proposed eddy length scale. 

 

Coarse resolution models depend on a proper closure for the diffusivity parameters. If 

diffusivity variations depend only on space (i.e., approximately stationary regions of 

eddy activity), it would be possible to compute the spatial distribution in advance with 

a high resolution analogue and use this information in the climate model. If, however, 

diffusivities also are a significantly changing function of time (as usually assumed), 

adjusting with the current resolved flow, the diagnosis of κ would have to depend 

entirely on the schemes based on the large scale flow information available in these 

models. Inconveniently, coarse resolution models of long integration times are quite 

sensitive to their SGS parameterizations (e.g., Griffies 2004). So formulating and 

validating these closures are of utmost importance. We follow here the 2008 paper of 

Eden, Jochum and Danabasoglu (Eden et al., hereafter ED08) 

 

2.3.1 Visbeck et al. (1997), “VMHS”. 

In the closure of Visbeck et al., hereafter VMHS, the eddy diffusivity is given by 

 

 

      ̅   (25)  

the right hand side being, respectively, a simple tuning parameter, the length scale and 

an inverse time scale. The time scale  ̅ is given as the mean Eady growth rate (depth 

averaged within the mean thermocline of the ocean),  
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 ̅  
 

√  

̅̅ ̅̅ ̅
 (26)  

and the overbar represent a vertical mean.    is the Richardson number,  

 

 

   
  

|   | 
    (27)  

that is the ratio of density stratification (buoyancy or Brunt-Vaisala frequency) to 

vertical velocity shear, which measures the growth potential of baroclinic instabilities 

(e.g., Kelvin-Helmholtz instability). When this number is small, the vertical shear has 

enough energy to extract potential energy from the stratification (Griffies, 2004). The 

eddy length scale were proposed to be used as the maximum of the local Rossby 

radius of deformation   , the local grid spacing of the model ∆, and the width of the 

baroclinic zone    . In agreement with Eden et al. (2008), we dropped the last 

parameter because it is troublesome to quantify precisely. The length scale is then 

normally given by       (   ̅ ), but we instead found it advantageous to use,  

 

 

  
      

     
                         

       

     
 (28)  

As proposed by e.g., Griffies (2004). This makes for a length scale transition ensuring 

that both parameters always influences  , which normally is not the case in models or 

domains where ∆>>    and ∆<<   .  

The averaged baroclinic Rossby radius of deformation is approximated by, 

 

 

 ̅  
 ̅ 

 
 (29)  

Where H is the same averaging height as in (26), Since the value of   was known at 

every level, the Rossby radius could more precisely be expressed as
8
, 

                                                 

8
 Usually, the integration depth,     , is taken no longer than 2000 m,. As a rough approximation, we ignored the 

lowermost s-levels where the depth exceeded this level (mainly in the deep basins). Results showed little 

sensitivity to this, however.  
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∫     

 

     

 (30)  

Although irrelevant at high latitudes (and thus our domain), note in passing that a 

substitute value is needed is needed for   near equator, where the Rossby radius will 

approach infinity. It is suggested in the closure to use √    , were    is the baroclinic 

wave speed. This still appeared to produce unphysically large diffusivities near 

equator as implemented in the experiments ED08. 

 

 

2.3.2 Ferreira et al. (2005), “NSQR”. 

To respect the substantial vertical dependence of observed eddy kinetic energies, 

Ferreira (2005; implemented by Danabasoglu and Marshall, 2007) proposed making κ 

proportional to the Brunt-Vaisala frequency squared, so that 

 

 

    

  

    
       (31)  

  is finally bounded by 
  

  
     ,     being a base value that is chosen, 

suggested by Danabasoglu and Marshall (2007) to be 4000  
 

 ⁄ .   is the local 

buoyancy frequency,  

 

 

    
 

  

  

  
   (32)  

Ρ is potential density and      is defined as value of   found in the uppermost level 

of the pycnocline, defined locally at each horizontal position. Determining a rigorous 

value of      could pose a challenge, however. 

We note that the upper pycnocline and transition to the diabatic mixed layer is 

unsatisfactory described in certain regions of our model generally showing a 
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pycnocline reaching the surface, resulting in a vanishing mixed layer. We 

approximated      as the greatest value of   in each column of water (which would 

normally coincide with the middle of the pycnocline). This automatically ensures that 

the diffusivity does not exceed   , as otherwise required in the closure. We chose to 

ignore the lower threshold of   as diffusivities are expected to take values much 

lower than 400  
 

 ⁄  in many places based on preliminary tests.  Note that this closure 

is designed to obtain a convenient and well working decay-scale, rather than being a 

vigorous theoretical result.  

 

 
2.3.3 Eden & Greatbatch. (2008), “EG”. 

The closure suggested by Eden and Greatbatch (2008), hereafter EG, is similar to 

VMHS in that it is based on a theoretical eddy length and time scale, 

 

 

         (33)  

where   is a tuning parameter and 

 

 

  
 

√  
 (34)  

The main difference from VMHS is the use of local values instead of depth averages 

and thereby respect the depth dependence of eddy energies. L is given as the minimum 

of the Rossby radius and the Rhines scale         √√   

 
 with EKE being the eddy 

kinetic energy. However, we ignored the Rhines scale because it becomes large at 

higher latitudes. Instead we found it pressing to respect the grid scale. Eventually the 

same length scale as with VMHS (28) was used, but with the local Rossby radius of 

deformation given as, 
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 (35)  

following Chelton et al. (1998), where H is the total depth at each horizontal position. 

In our high latitude domain and with the assumptions made, VHMS and EG can be 

expected to produce similar results, disregarding depth dependency.  

 

 

2.3.4 VMHS/NSQR 

With the widely used VMHS closure being only horizontally varying and the NSQR 

closure only (locally) depth dependent, we look into combining them to make an 

alternative closure. This involves modifying the VMHS by giving it a depth 

dependency identical to the decaying profile of NSQR. This is simply done by using 

the values from VMHS instead of the    appearing in NSQR, eq. (31). When at the 

same time doubling the tuning parameter   to obtain sufficient mixing strength in the 

upper water masses decaying with depth, one should obtain values and distributions in 

rough compliance with the other closures and previous estimates based on both 

theoretical and observational data
9
.  

 

 

Eden et al. (2008) tested the three of the above closures in a model by comparing long 

term solutions with the climatology of Levitus & Boyer (1994). In general, this 

comparison and evaluation is burdened by the lack of large-scale coverage of 

observational measurements and estimates of eddy statistics. Also, one must consider 

how the dynamical algorithms and boundary forcing chosen in their CCSM model 

influence the result and affect the interpretation of the diffusivity closures. For 

instance, one cannot off-handedly exclude the possibility that “two wrongs make a 

right” in indirect experiments. Therefore, as a supplementary experiment, we attempt 

here a simple and direct comparison of the above diagnosis to our calculation of the 

diffusivities based on the output of an eddy resolving model in a more limited domain. 

                                                 

9 While previous studies have only been partially successful in diagnosing the gross magnitude of the diffusivities, 

gathered observational data indicate that eddy energy levels decrease with depth (Gent, 2010). 
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Hopefully our findings will support or strengthen the verdict of ED08. 

 

2.4  Direct diagnostics and the complications of rotational fluxes 
 

Using output data from an eddy-resolving model, one may in principle quantify the 

amount of diffusivity (associated with mesoscale eddies) directly. Knowing the 

correlation term, the horizontal part of equation (22) can be manipulated and solved 

for  . Considering eddy fluxes of potential density, it is assessed that 

 

      
     ̅̅ ̅̅ ̅      ̅
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     ̅̅ ̅̅ ̅   (     ̅)

|   | 
   

(36)  

So that   describes the amount of mixing transporting density down the horizontal 

gradients whereas the advective   is across (also in the horizontal). In words, eq. (36) 

says that the stirring parameter is proportional to the size of eddy fluxes projected 

onto the mean negative density gradient. (Note that while the vertical contribution is 

important to consider in ocean models,   can be solved here considering only the 

horizontal eddy flux, which is about an order of magnitude larger than the vertical.) 

Previous studies (e.g., Rix & Willebrand, 1996; Roberts and Marshall, 2000; Eden et 

al., 2006) have resulted in rather unsatisfying attempts to solve κ directly using the 

raw fluxes as they appear in (22), often finding unphysical (large negative values) and 

noisy distributions with changing signs. Diagnostics have normally shown low 

correlations between the horizontal fluxes and its parameterization in (22), and several 

authors have pointed out a general lack of agreement between diagnosed eddy fluxes 

and the downgradient assumption (e.g., Roberts and Marshall, 2000; Griesel et al., 

(2009)). This flux-gradient relationship is influenced by rotational components that 

have been ascribed the main reason for absent correlations and negative, unphysical 

diffusivities (Bryan et al., (1999). Only the divergent parts of the fluxes, i.e., the 

components that act on the prognostic budget (1) should be used to estimate the 
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diffusivity κ. The rotational parts transport equal amounts of tracer into and out of any 

region, and hence divergence-free. Despite their irrelevance to (1), the presence of 

these fluxes corrupts and biases the     ̅̅ ̅̅ ̅̅  term in respect of solving (22) (Eden et al., 

2007b). 

Rotational and divergent fluxes may in principle be separated using a Helmholtz 

decomposition (e.g., Jayne and Marotzke 2002). But such a process depends on 

known boundary conditions to produce unique results (Fox-Kemper et al., 2003), and 

requires calculations of integrals that are fairly expensive numerically. Marshall and 

Shutts (1981) instead propose an approximate diagnosis of the rotational fluxes 

through the eddy variance equation in the quasi-geostrophic approximation in which 

they describe the rotational component fluxes as advection of density variance in the 

horizontal, i.e., circulating along isolines of constant variance. Having computed the 

rotational fluxes, these can be subtracted from the total eddy fluxes to find the 

residual. The MG method is a generalization of the method proposed by Marshall and 

Shutts (1981), as discussed next in Section 2.4.1. 

In order to acquire estimates of the eddy diffusivities that are not compromised by the 

presence of rotational fluxes, we must assess the residual divergent fluxes relevant for 

prognostics of water masses. For this we attempt two different approaches. First, an 

effort is made to subtract most of the rotational components directly from the eddy 

flux field using a method (2.4.1) suggested by Medvedev and Greatbatch (2004). 

Secondly, we analyze the divergence of the eddy fluxes and the parameterizations 

(2.4.2). The divergence of vector fields have, by construction, vanishing rotational 

components, enabling us to compare relevant correlations. Both procedures are 

elaborated next Results are presented in Section 4. 

 
2.4.1  a)  Eddy decomposition per Medvedev & Greatbatch (2004, 2006) 

The aim with this approach, hereafter called MG, is a generalization/refinement of the 

theory by Marshall and Shutts (1981) with a purpose to define a rotational flux, that is 

associated with the advective component of eddy the variance flux   ̅̅ ̅̅  (the variance 

flux along isolines of mean tracer), while the residual diffusive part is associated with 

dissipation of eddy variance (diffusive flux across isolines). No assumptions are made 
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about the mean flow, in contrast to MS assuming that mean flows follow contours of 

potential density (geostrophic) and purely adiabatic flows. But again, this does not 

necessarily isolate a residual flux that is completely divergence free, so it must be 

considered an approximation.  

The practical result and method presented in the papers of Medvedev and Greatbatch 

(2004), and demonstrated in Eden et al. (2006) can be written as, 
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(37)  

Where   can be interpreted as a rotational flux streamfunction, the rotational flux 

component appearing when taking the gradient (rotated 90°). On that account, the 

only difference from the diagnostic equation (36) presented earlier is a simple 

subtraction of the defined (MG) rotational flux from the eddy flux, presumably 

leaving a divergent, residual flux appropriate for diffusivity diagnoses. Eden et al. 

(2006) and Eden (2007) reports of having successfully removed most regions of 

unphysical, negative diffusivities through the use of this procedure.  

 

2.4.2 b) Evaluating rotation-free divergences 

We have presented a method of evaluation based on explicitly diagnosing the stirring 

coefficient κ, which is then directly compared with that of the various closure 

schemes. This approach, however, is inconveniently compromised by rotational fluxes 

obscuring the relevant divergent residual fluxes. An alternative method is acquired 

when ignoring the “true” κ and instead regard the divergences of fluxes and the 

parameterization directly (which is equally relevant since it is the divergence of the 

fluxes that influences the governing equations). from eq. (22) the horizontal GM skew 

flux and the downgradient parameterization,  
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        ̅          ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅    

 

Taking divergences on both sides yields, 

 ∇  (     ̅)     ∇       ̅̅ ̅̅ ̅̅  
(38)  

Where   is the closure to be tested. By definition, the rotational fluxes are eliminated 

because their divergence is zero. This means, a higher correlation between the left and 

right hand sides in (37) indicates the better closure (within our framework, set 

parameters and decisions made during implementation). Results are presented in 

Section 4. 

Note that the divergence of     ̅̅ ̅̅ ̅̅  could supposedly be influenced by cross-gradient 

components appearing as an extra term, ∇  (       ̅), in eq (22), or by 

substituting the   with tensor containing diagonal (diffusive)   and off-diagonal 

(advective)  . But in agreement with the original GM-parameterization and the 

conclusions by Eden (2010), we may neglect this contribution and focus on the 

diffusive part of the horizontal eddy flux.  

Despite avoiding the complications of rotational fluxes by considering the divergence 

of the eddy fluxes, many earlier studies have found the correlation between the two 

terms of eq. (38) to be low and results noisy (Nakamura and Chao., 2000; Solovev et 

al., 2002, Griesel et al., 2009).   
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Section 3:  The model, methods and set-ups.   

 

This Section briefly describes the data used for computations in this study, the source 

model and some practical considerations on solving equations (36)-(38) on a discrete 

numerical lattice based on a terrain-following grid. 

 

3.1  Dynamical properties of the source model   

3.1.1  About terrain-following models 

Free surface sigma (terrain-following) models (also called  -models) emerged in the 

early 1980's, from need to model turbulent processes in proximity of surface or 

topographic boundary layers (Mellor and Yamada, 1982). Their vertical coordinate 

were expressed as 

   
   

 
 

(39)  

where η represents the surface deviation from the resting position z=0, and D is the 

total height of the fluid column. 

Such a coordinate system provide a smooth representation of the bathymetry, and is a 

natural choice for simulating flows close to solid boundaries. In contrast, z 

(geopotential) models were prone to unphysical interactions due to the "step-like" 

representation of topography. In addition, the terrain-following type of ocean models 

elegantly avoided the overflow problem in z models that would result in vanishing 

surface grid cells (Griffies. 2004). On the other hand, the sigma-models were 

challenged in accurately describing the pressure gradient, here including a second 

term (see eq. (43) ) to correct for the sloping vertical coordinate lines. The pressure 

gradient error normally becomes significant when these vertical coordinate slopes are 

steep, that is, when topographic slopes are steep and the correction term gets on the 

order of the along-coordinate gradient term. A highly accurate numerical 
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representation is required to avert spurious pressure forces. 

 

3.1.2 The ROMS model (Regional Ocean Modeling System) 

ROMS is a community built, open source, state-of-the-art ocean model that with 

highly advanced physical and numerical algorithms that makes ROMS a more 

comprehensive program than the otherwise similar POM model. The model is 

constructed mainly on Fortran 90/95-code and uses C-preprocessing for user input.  

 

The numerical dynamics are resolved on an Arakawa C-grid in the horizontal and 

stretched terrain-following staggered vertical coordinates (Shchepetkin and 

McWilliams, 2005), which allows better resolution on layers of particular interest or 

turbulent regions that demand better resolution. It contains algorithms designed to 

minimize the pressure gradient error. For computational efficiency, the model utilizes 

a number of barotropic timesteps within each baroclinic timestep. More information is 

found at www.myroms.org. 

 

There has been little use of this branch of ocean models in publications concerning 

climate simulations. These models could compliment other types and will hopefully 

contribute more in future climate research. Sperrevik (2008) demonstrated that ROMS 

is indeed capable of reproducing experiments performed on a geopotential frame (e.g 

Marotzke 1997 and Nycander et al. 2007), and produced a climate prognosis for the 

MOC reasonable and interesting results. It should be noted that studies published on 

the topic of mesoscale eddy diffusivites are almost (if not entirely) exclusively based 

on data from z-coordinate models. In that regard it may be enriching to the field to use 

this kind of data in the current study. 

 
3.2  Our simulation run, ‘Nordic 4 km’   
 

Our model domain is 4000 by 2000 km covering the Greenland, Norwegian and North 

seas, a small portion of the Arctic Ocean and borders the northern part of the North 



 

 

36 

 

Atlantic. The rectangular domain is rotated roughly 45° counter-clockwise off the 

standard north-west directions. The „x and y‟ directions are here referred to as xi and 

eta respectively.   

The resolution of about 4km (varying slightly with latitude), should be able to enclose 

the Rossby radius of deformation in parts of the domain, especially in the 

southernmost regions and deep-water basins where (baroclinic) wavespeeds are large. 

The size of mesoscale eddies are usually larger than the Rossby radius (Smith et al., 

2000), but scales coherently (locally, as discussed in section 2.3). On our 4 km 

Arakawa C-grid, we will reasonably permit eddies down to 16 km diameter, but can 

only expect proper information about eddies of about 40 km and up. This however 

covers a substantial and conceivably adequate portion of the mesoscale. It is important 

to note however that even if the model fails to resolve or just partially permit the 

smaller members of the mesoscale family, the model is self consistent; this means that 

the flow realized in the model are physically complete within its own system. Even if 

there are smaller eddies in the real ocean, they do not exist in the simulation, so the 

model‟s scale cut-off should pose no problem for physical interpretations or be the 

reason for noisy and incomplete results, as could be the case when working with real-

world drifters, etc. 

No explicit horizontal viscosity/diffusion (other than the numerical diffusion from the 

advection scheme to keep solutions stable) were used. Low viscosity retains the fine 

grained characteristics of the small scale flow we seek to define and parameterize.  

 

3.2.1 Visual demonstration of the resolved dynamics  

 

To gain a firm intuitive sense and cognition of the dynamical processes we study, 

output values of surface temperature over the last integration year were compiled to 

an animation viewable at http://www.youtube.com/watch?v=LvgKj5GRrNI.
10

 This 

demonstrates the rich dynamics of the ROMS model and indicates roughly the size of 

the resolved eddies.  

 

                                                 

10 Choose 720 P for the best quality. 

http://www.youtube.com/watch?v=LvgKj5GRrNI
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3.2.2 Overview of the model domain, bathymetry and the averaged main currents. 

 

Figure 3.1; The entire Nordic 4 km model domain; colored arrows depict the time-and-depth 

averaged mean flow, and filled contours illustrate the bathymetry (increasing depth with 

darker colors). Also shown are latitude isolines.  

 

 

3.3  Routines and methods used. 

 

3.3.1 On averaging times and spatial smoothing routines. 

 

The density ρ present in our equations were assumed to be potential density, which is 

more relevant to the adiabatic nature of the fluxes we are studying. It is also a less 

noisy quantity than the in situ pressure. Consequently, we used a uniform pressure 

identical to surface pressure in our equation of state,    (     ), given by the non-

linear relation by Jackett and McDougall (1995). 

 

The eddy density fluxes     ̅̅ ̅̅ ̅̅  from the model were estimated from equation (4), 
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    ̅̅ ̅̅ ̅̅    ̅̅̅̅   ̅ ̅ 
(40)  

where the overbar represents a temporal average. The density variance were found by 

the sum of squares method, that is, 

 

 

   ̅̅ ̅̅    ̅̅ ̅   ̅  
(41)  

Where       ̅, a deviation from the temporal mean ascribed as eddy activity.   

This is a convenient procedure that requires only one run through the data. We note in 

passing that one should be vary that calculating a small number as a difference of two 

large numbers
11

 may produce wrong numbers if the larger numbers sustain a minor 

numerical truncation. This was however tested against a control double-run where the 

mean were obtained before calculating the deviations directly). Much larger numbers 

than ~1000^2 must be the case for even 32-bit floats to get truncated. 

 

In eq. (40),     ̅̅ ̅̅ ̅̅  is meant to account for eddy effects on the density, but changes 

drastically with the mean densities (and flows) varying by seasonal changes. 

Therefore these averages must be taken in a series of intra-seasonal, inter-annual 

means to remove the effects of the seasonal cycle. Eden (2007) used 3-month means, 

so we initially tried the same. However, less noisy and more convincing results were 

produced when going even to shorter averaging. This relevant time scale of mesoscale 

eddy activity has been found to be sub-monthly. Also, three-month averages 

inevitably picks up signals of seasonal variations in the mean density field. Even 

monthly averages can be argued to be influenced by seasonal change. Several 

definitions of eddy fluxes were tested, including deviations from 21, 7 and even 3 day 

averages. The shortest averaging windows resulted in lower (too low) values of 

diagnosed diffusivity, indicating that the time scale of the processes we investigate is 

generally somewhere in between a week and a month. 

 

Despite these precautions, computing even the raw diffusivities from (22) pose new 

                                                 

11 Which is the case with water density and in turn the basis for the Boussinesq approximation. 
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questions. It is clear that the variables should be smoothed or averaged spatially over 

many eddy length scales; we cannot expect the parameterizations to hold everywhere, 

but taking out the noise should reveal the dominating trend. In analogy to a 

temperature field, molecules all have different kinetic energies and directions, but the 

kinetic energy mean field, which is the temperature field, always takes on an exact 

down-gradient evolution.  

Furthermore, taking gradients may quickly increase whatever numerical noise present 

in our data, rendering some kind of smoothing a necessity. But exactly when and how 

much to smooth had to be considered and carefully tested. Little information on this 

were supplied in Eden et al and Eden (2006, 2007), despite the lurking noisiness of 

the rotational potential  . 

It was necessary to smooth variables prior to taking each gradient.  We took 

precautions to keep the smoothing at a moderate level, preferably at no more grid-

points than the typical mesoscale eddies we are studying, which we assumed to be 

about 40 km in diameter. Hence, some variables were smoothed
12

 (spatially averaged) 

over 10 by 10 grid-points. Smoothing data is not a rigorous practice, but one should 

respect the specific physical processes and be wary of how such averaging is executed 

to keep solutions physically sound. In this case, smoothing over the typical scale of a 

mesoscale eddy should be reasonable. 

Marshall and Shutts (1981) assumed that density variance is not transported by 

velocity perturbations, so that   ̅̅ ̅̅   ̅ ̅. We used the entire variance flux acquired 

as 

 

 
  ̅̅ ̅̅  

   

 

̅̅ ̅̅ ̅
  ̅   ̅̅̅̅  

 ̅  ̅ 

 
 

(42)  

Where   is half the density variance (eq. (37)). 

The θ-term in eq. (37) is described as positive in Eden et al. (2006) but negative in 

Eden (2007). Both possibilities were tested, and unphysical distributions of 

diffusivities for negative θ indicated that the term is necessarily positive.  

Since our output data stems from a terrain-following, s-coordinate model, a correction 

                                                 

12 Spatially smoothing data can be seen as averages over a range of eddy length scales. 
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term is needed for the horizontal gradients in e.g. eq. (28). 

                 
(43)  

where z is the depth,    is a gradient in the horizontal plane a    along a constant S-

level. These gradients coincide at the surface level and in regions of flat bathymetry. 
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Section 4:  Experiments and Results 

4.1  The diagnostics of eddy fluxes and diffusivities 

To test the integrity of the horizontal GM skew flux down-gradient parameterization 

from eq. (22),      
        ̅          ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅̅      we show the surface eddy 

fluxes and surface density contours in the Greenland and Norwegian Seas in Figure 

4.1. A clear coherence between the fluxes and its parameterization is evident by the 

downgradient trend of the fluxes. Upon closer examination, however, it becomes 

apparent that it does not hold for the entire domain; horizontal isopycnal fluxes 

dominate the diapycnal fluxes
13

 in a few regions (for example south of Iceland) i.e., 

where the parameter   would dominate  . This does not necessarily mean that the 

downgradient assumption is flawed, since it is only concerned with the divergent 

component that affect the tracer budgets. Rotational components could be present in 

this picture, and removing them would result in different diagnosed fluxes.  

Figure 4.1; Temporal averaged surface density eddy fluxes      ̅̅ ̅̅ ̅ are illustrated by green 

arrows and the surface density field represented by filled contours, where darker colors 

                                                 

13 Note that diapycnal fluxes also have a vertical component. Fluxes that are horizontally diapycnal may be 

isopycnal (adiabatic) in all three dimensions, which is fundamental to the GM parameterization. The skew flux 

takes on a diffusive role only in the horizontal plane. 
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represent denser water. Data are smoothed over a window of 15 by 15 grid-points.  

 

The rotational, non-divergent part of the fluxes as assumed by the MG-theory to be 

      , is shown in Figure 4.2. A conspicuous, and perhaps suspicious, observation 

is that the magnitude of the rotational fluxes turned out to be as large and some places 

larger than the original fluxes. This despite the fact that the θ-field was smoothed 

extensively (as much as taken to be physically reasonable) before taking the gradients, 

consequently reducing the gradients of the noisy quantity  . Griesel et al., (2009) 

argue that the rotational component is vastly dominating the divergent component 

based on the observation that the curl of eddy fluxes is generally much larger than the 

divergence. Although we raise question to their reasoning
14

, the results of the MG 

equation indicate that their statement may be true in this case. Considering 

geostrophic and rotating motion one could also intuitively expect this. If so, it is clear 

that we seek, from eq. (37), a small divergent part that is given by the difference of 

two much larger numbers; a warning sign that obliges for extra precaution.  

 

Figure 4.2; Temporal averaged surface rotational density fluxes     ∇   are illustrated 

by red arrows and the surface density field represented by filled contours. Data are 

smoothed over a window of 15 by 15 grid-points. Darker colors represent denser water. 

 

                                                 

14 We advocate that the divergence and curl of a vector field may not be used as unique measures for the divergent 

and rotational component. Even if (   )   (   ), the rotational component does not necessarily dominate the 

divergent. 
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Figure 4.3; Temporal averaged surface density eddy fluxes      ̅̅ ̅̅ ̅, minus rotational 

density fluxes     ∇  , are illustrated by yellow arrows. The surface density field 

represented by filled contour. Darker colors represent denser water. Data are smoothed 

over a window of 15 by 15 grid-points. 

A small error or uncertainty in the estimation of the larger rotational flux will greatly 

affect the relative size of the residual divergent flux. Thus a successful extraction of 

the divergent component would require high quality data and precise implementation 

methods. Since the MG method is an approximation, extracting meaningful divergent 

components may pose a formidable challenge. 

Figure 4.3 indicates that the residual fluxes have, in fact, a lesser downgradient 

alignment than the total eddy fluxes as seen in Figure 4.1. 

 

4.1.1 A direct (raw) diagnostic of κ. 

Eq (28) decomposes to, 

         
     ̅̅ ̅̅ ̅      ̅      ̅̅ ̅̅ ̅      ̅

|   ̅|  |   ̅|
    

(44)  

Solving this equation at each point in our three-dimensional space should give us a 

direct diagnosis of the magnitude and distribution of the raw diffusivities. In this 

context, raw means the total fluxes with both the divergent and the inconvenient 
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rotational fluxes present. The estimation of κ is illustrated in Figure 4.4. Despite the 

apparent noise, it gives a decent indication on how κ is distributed throughout the 

Nordic seas, in respectively depth averaged values (upper left), surface values (upper 

right, notice the scale change) and, a vertical section of horizontally averaged data 

(bottom pane). The highest values of κ are found in a belt loosely related to the North 

Atlantic Current (NAC), with a diffusive hot-spot in the NAC region south of the 

Faeroe Islands that continues along the Iceland-Faeroe ridge. Considerable 

diffusivities appear in the transitional region Barents- and Norwegian Sea. In the 

quiescent, abyssal regions of Greenland sea, and the gyres of the Norwegian sea, there 

are, as expected, little depth averaged eddy activity and low values of κ.  The North 

Sea imparts chaotic regions with diffusivities of alternating sign. The Barents sea also 

show traces of negative diffusivities. 

  

 

Figure 4.4; Distributions of diffusivities κ. The upper left pane depicts depth-averaged values, the 

upper right surface values (note the scale change). The lower pane represent a vertical section of 

horizontal average ignoring landmasks. Note that the vertical figure displays s-coordinates rather 

than physical height, but show clear trends of depth decaying diffusivities.   

 

It is evident that diffusivities diminish with depth, consistent with observations of 

eddy energy levels (Gent, 2010). The shown horizontally averaged values of κ 

(bottom pane) ranges from slightly negative to almost about 800      by the upper 
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layers, but do not appear to concede to the overall canonical mean magnitude of 800 

     (Danabasoglu, 2004). If a spatially constant value were to be suggested based 

on this particular diagnosis, it would be closer to 300     .  

One should note of the lack of negative regions that were expected on account of 

diagnoses made in other studies; large regions of unphysical, negative diffusivities 

have dominated many previous results and have remained a bothersome artifact (as 

discussed in Section 2.4). Our diagnosis show some telltale signs of negative 

contributions, but only in limited areas, fully receding when taking a horizontal mean. 

Persistent negative diffusivities have commonly been explained as a consequence 

from the complications by rotational fluxes (e.g., Bryan et al., 1981; Eden et al., 

2006). The cause of the contrast to our result is not clear. It was evident from Figure 

4.1 that most of the raw eddy fluxes comprised a dominant down-gradient 

(horizontally diapycnal) projection, affording positive κ. But even if our current data 

look and seem plausible, presence of rotational fluxes may have, and probably have, 

warped the estimation to some degree. 

 

4.1.2 Subtracting the MG rotational components. 

Eq. (29) takes on the following form when decomposed, 

 

        
(    ̅̅ ̅̅ ̅     )     ̅  (    ̅̅ ̅̅ ̅     )     ̅

|   ̅|  |   ̅|
   

  
  ̅̅ ̅̅  (    ̅)    ̅̅̅̅  (   ̅)

|   ̅|  |   ̅|
  

(45)  

where the   ̅̅ ̅̅  vector are given by eq. (37), describing advection of density variance, 

  
   ̅̅ ̅̅ ̅

 
. 

Eq. (45) is similar to (44), but where rotational fluxes, as assumed by Medvedev & 

Greatbatch (2004), have been subtracted from the raw fluxes. Figure 4.5 presents the 

distribution of     as given by eq. (45). It is immediately noticeable that this result 

contain more noise compared to     . The magnitude has also generally increased.  
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The most significant diffusivity intensifications appear at the Iceland-Faeroe ridge, the 

Barents-sea and along certain parts of the NAC including near the west coasts of 

Britain and Norway.  

An evident anomalous outcome of the MG method is the intense negative diffusivities 

appearing in assorted regions, mostly over ridges and steep slopes in the bathymetry. 

This behavior was persistent through various methods of temporal averaging and 

spatial smoothing. 

  

 

Figure 4.5; Surface distribution of MG-diffusivities as given by eq. (45). Diffusivities range from 0 to 

over 2000 m^2/s, with negative values appearing only a very few places. More pronounced 

diffusivities (compared to Figure 4.4.), both negative and positive, appear throughout the domain. 

 

The rise of negative regions was highly surprising, since getting rid of negative 

diagnostics of κ has been a key motivation for attempts to separate divergent and 

rotational eddy fluxes. In this interest, we observed the opposite effect. Of course, 

     presented rather few negative regions that could possibly be sign-corrected. It 

could be that the MG method primarily works over larger (negative) areas and may 

induce local increase of negative diffusivities.   

 

Also, physical explanations may exist for negative diffusivities in limited regions, and 

one should not be tempted to promptly dismiss the validity of     . The appearance 
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of intense negative regions happens almost exclusively near steep topography (in the 

depth average case), which is regions where solid boundaries may influence the effect 

of eddy processes. Furthermore, the increase of mixing strength arriving with the MG 

method is a step closer to accordance with mean coefficients earlier estimated as high 

as ~ 800      (Danabasoglu, 2004). This number is far from conclusive, however. 

Many of studies have attempted to diagnose κ, but only a gross overall magnitude 

suitable for large scale applications can be firmly concluded, varying from regions of 

0 to over 5000     , and in some cases extreme local values over 10.000      have 

been reported (e.g., Rix and Willebrand, 1996; Nakamura and Chao, 2000; Roberts 

and Marshall, 2000; Solovev et al., 2002, Eden et al., 2006; Tanaka et al., 2007; 

Griesel et al., 2009)  Most studies have been carried out on different models and types 

of computational domains, making a good first guess for what kind of values we could 

expect in our limited region case difficult. For instance, simulations in Eden et al. 

(2006) and Eden (2007) show occasional large regions (up to the very size of our 

domain) of almost vanishing diffusivities while other equally large areas exhibit over 

3000     . No previously published studies known to us have estimated diffusivities 

in the Nordic Seas, so no direct comparison is available. The results of κ presented so 

far appear as physically reasonable in both magnitude and distribution, however. To 

that resolve, we have obtained a foundation to which the output from the various 

diffusivity closures may be compared. 

 
4.2  Trial A: Comparison of closures and diagnoses 

 

Four different closures, EG, VMHS, NSQR and VMHS/NSQR were diagnosed based 

on monthly averaged variables and summed up (similar to the procedure with the 

direct diagnoses). As established in Section 2.3.4, the latter is a combination closure 

motivated by the strictly horizontally dependent VMHS, and depth-only dependent 

NSQR. None of these results are exact replica of those presented in Eden et al. (2008), 

but slightly adjusted to produce the most compliant (with each other, the direct 

evaluation and intuitive knowledge) results. For instance, due to the high latitudes we 

work in, the Rhines scale- dependence were dropped from the EG closure and rather 
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introduced a modest dependency on the local grid scale. The tuning parameters of 

VMHS and NSQR was respectively increased and reduced in comparison to earlier 

suggested tuning (ED08). The essential physical characteristics of the closures were 

however maintained. Variables are smoothed over 5 by 5 grid points, prior to 

computation of κ. 

Figure 4.6 illustrates how diffusivities, as produced by these closures, are distributed 

in our domain (for comparability, the lower part of the color scale is reserved for 

negative diffusivities that appear in direct estimates). Despite being fiercely distinct in 

some regions, they do pick up many of the same characteristics. All schemes produce 

high diffusivities in the northern Atlantic west of Great Britain, continuing in a belt 

roughly following the NAC along the coastal regions of Norway and along the West 

Spitsbergen current. All closures show minima in the quiescent, abyssal gyres of the 

Norwegian and Greenland seas, as well as the Arctic Ocean north of Spitsbergen, all 

on general accord with the distribution of the direct diagnose of κ.  

 

All schemes concur on a hotspot of diffusivities along the Faeroe-Iceland ridge. In the 

Barents- and North Seas, VMHS and EG pick up only a modest signal of diffusivities, 

while NSQR in contrast produces intense diffusivities in these regions in 

disagreement with the direct diagnosis. 

It is clear that all closures are heavily influenced by the underlying topography 

(illustrated by black lines). In this regard one should also notice the veins of high 

diffusivity found along the topographic ridges like the Vøring-plateau in VMHS and 

to some degree EG (but not in NSQR). In such regions the topography normally 

places a strong constraint on the flow (topographic steering is obvious in Figure 3.1), 

often suppressing eddy activity in such regions. The mean-flow dependent closures, 

on the other hand, find strong local gradients and predict increased diffusivity where 

there should probably be less. This unphysical defect also occur inside strong currents. 

Ferrari & Nikarushin (2010) suggest a technique to reduce this kind of local 

overrepresented diffusivities (Section 4.2.1). The surface values of the same 

experiments are shown in Figure 4.7, demonstrating a much lower coherence among 

the closures than for the depth averaged analogue (Figure 4.7). 
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Figure 4.6a; Depth averaged values of κ for closure EG (top left), NSQR (top right), VMHS 

(bottom left) and VMHS/NSQR (bottom right). Also shown is bathymetry contours (black 

lines) and lines of constant latitude (white lines). The actual values may be tuned using a 

parameter, so the main interest of the figure is the actual distribution. 

 

  

Figure 4.6b; Depth averaged values of      and    , copied from Figure 4.4 and 4.5 for 

easy comparison to Figure 4.6a, and use the same color scale.  
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Figure 4.7a; Surface values of κ for closure EG (top left), NSQR (top right), VMHS (bottom 

left) and VMHS/NSQR (bottom right). Also shown is bathymetry contours (black lines) and 

lines of constant latitude.  

 

  

Figure 4.7b; surface values of      (left) and     (right) copied from Figure 4.4 and 4.5 for 

easy comparison to Figure 4.7a. 

 

The first thing to notice is NSQR‟s unphysically high mixing in the surface of the 

deep basins of the Norwegian and Greenland sea, where low diffusivities are 

expected. This is a consequence of the pycnocline reaching the surface in these parts 
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of our model domain (no presented mixed layer). It follows that the buoyancy 

frequency   in (31) finds its maximum (equal to     ) This extreme surface 

diffusivity however, decays rapidly with depth and so the depth averaged plot (Figure 

4.6) correctly reflects the diminishing values of eddy mixing in these regions.  

  

 

  

Figure 4.8a; Diffusivities (    ) averaged over the eta-direction (south-east to north-west) 

ignoring land-masks, showing the vertical dependence for closure EG (top left), NSQR (top right), 

VMHS (bottom left) and VMHS/NSQR (bottom right). Caution; these plots show averaged values 

along constant s-layers only, not height. The essential trends of decaying κ are nevertheless clear. 

 

  

Figure 4.8b; surface values of      (left) and     (right) copied from Figure 4.4 and 4.5 for 

easy comparison to Figure 4.8a. The color scale is identical. 

 

VMHS appears to produce very low values at the surface plots. This is simply because 

of the scale change between Figures 4.7 and 4.8; VMHS is vertically constant and 

therefore grants lower surface values than the vertically dependent schemes that 

intensifies eddy mixing with lesser depth (see Figure 4.8) 
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Figure 4.8 reveals a trend of diffusivities decreasing with depth (except for VMHS). 

Closure EG also exhibit an increase of mixing in proximity of topography, that must 

be a spurious effect caused by the vertical velocity shear taking place close to 

topography (and especially near slopes), an incentive for the closure to predict 

excessive eddy mixing due to increase of eq. (34). This artifact should be trivial to 

avoid during implementation in ocean models, and should be ignored in the evaluation 

process. 

 

4.2.1 Ferrari-Nikarushin Suppression 

In Section 2 it was stated that the enhanced diffusion analogy between eddies and 

molecular diffusion holds as long as there is a sufficient separation of time scales 

(Papanicolaou and Pironneau, 1981). However, eddy diffusivities can be strongly 

modulated by variations in the large-scale currents, as eddies propagate at a speed 

proportional to, but smaller than, that of the mean flow that engulfs them (Vallis, 

2005). Consequently, diagnostics may overestimate eddy activity in such regions. 

This issue with eddy mixing is mostly an ignored topic in the literature, but argued by 

others to be a crucial feature (e.g., Andrews et al. 1987). Indeed, our experimental 

diagnostics of EG and VMHS exhibit pronounced veins of intense diffusivities along 

the main currents that is not indicated by the direct estimation (Figure 4.4). 

This problem was acknowledged by Ferrari & Nikurashin (2010), who suggested that 

diffusivities in main currents should be dampened when the ratio between mean 

kinetic energy and eddy kinetic is large, as one should expect from inside core jets. In 

their paper they worked with the diffusivity estimation of Holloway based on the early 

satellite altimeter data (Keffer and Holloway, 1988), but the essential finding in that 

paper could easily be (approximately) applied to our diffusivity closure experiments 

by establishing,  

 

 

     
 

    
   
   

  
(46)  

Where   our pre-diagnosed diffusivity in each point,     is the „suppressed‟ 

diffusivity, and   is a tuning parameter suggested to be about 8. MKE and EKE are 
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mean kinetic energy and eddy kinetic energy respectively. This ratio is presumably 

largest (MKE will dominate) in core jets. In turbulent regions without pronounced 

mean flows, EKE will dominate and the diffusivity will remain largely unchanged. 

Applying this to the results of VMHS (figure 4.6), yields a subtle difference described 

by Figure 4.9. 

a) 

 

 

b) 

 

 

Figure 4.9; a) Close-up of the VMHS depth-averaged output from Figure 4.7. A Ferrari-

Nikarushin Suppression is applied to the fields (b), slightly reducing the diagnosed 

diffusivities along topographic and inside main currents but largely maintaining intensity 

elsewhere. 

 

The kinetic energies were estimated monthly as     
 

 
   ̅̅ ̅̅  

 

 
(  ̅̅̅̅   ̅ ) and 

    
 

 
( ̅ ) where   (   ) is the horizontal velocity, vertical kinetic energies 

being neglectible. 

The suppression method only slightly reduced the estimated diffusivity at topographic 

ledges and main currents. Tuning up the parameter d, eq. (46) significantly suppressed 

the entire diffusivity field. This is because EKE and MKE are strongly correlated, 

resulting in an almost uniform reduction of κ using too high suppression parameter. 

High correlations of MKE and EKE is not merely a regional characteristic of our 

domain, but a common property as well (Eden, 2007)
15

 A subtle improvement was 

however evident, and was used hereafter in our experiments, more specifically in 

closures VMHS, EG and VMHS/NSQR. 

                                                 

15
 Eden 2007 nevertheless notes an exception in the rapid flowing Malvinas current east of south-America. Attached and 

stabilized by the pronounced continental slope, it demonstrates high MKE and low EKE. 
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4.2.2 Diagnostic-Closure Correlations 

Four closures were tested; one horizontally dependent only (VMHS), one only 

(locally) vertically dependent (NSQR), and two dependent on both. A careful 

comparison of similarities found in Figure 4.6 through 4.8 may suggest which closure 

that best recognized and recreated the conditions for eddy strength in our domain. 

Assuming, of course, that our direct diagnoses of diffusivities are amply accurate. The 

main features were by large satisfactory described, for instance the calm abyssal 

regions and the stronger mixing along and outside main currents and the moderate 

levels in the Barents Sea and the northernmost Atlantic. The intense hotspot south of 

Faeroe Islands were underestimated by all closures, in contrast to the low (but chaotic) 

diffusivities of the North Sea that were generally overestimated.  

  

 

  

Figure 4.10; Differences (biases) between the directly diagnosed diffusivity and each 

closure (depth averaged). Data are smoothed over 15 by 15 grid points. From top right 

to bottom left: a) EG, b) NSQR, c) VMHS, d) VMHS/NSQR. 

 

 

In VMHS and EG, Ferrari suppression moderated exaggerated diffusivities over 
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continental slopes. NSQR seemed inadequate to capture the dominant characteristics, 

and several places gave very high values of κ when the opposite were desired, for 

instance, in the North Sea, Barents Sea and the entire region around Spitsbergen and 

stretching south. These trends are visible in Figure 4.11, where the bias, i.e., 

difference between the closure and the direct calculation (still depth averaged) are 

illustrated. Overestimations are shown in red and underestimations in blue. All data 

are smoothed over 15 by 15 grid points for more appropriate comparisons in terms of 

eliminating noise and to simulate the conditions of a coarse gridded model (recall that 

point values in such models are equivalent to spatial averages in finer grids, (3)). 

Additional spatial smoothing would enhance the correlation, but could also cancel out 

much of the differences between the closures.  

The values displayed in Figure 4.10 are only biases, in the sense that they can easily 

be adjusted higher or lower with a simple parameter. Of course, reducing bias one 

place increases negative bias elsewhere, and vice versa. In the depth-averaged test, 

VHMS produces the best fit with a correlation coefficient of 0.71. This is illustrated in 

Figure 4.11, where each point in (depth averaged) space is mapped as a function of 

the diagnosed and the (closure) estimated κ. VMHS show the clearest trend 

resembling a diagonal line. At the same time NSQR shows a poor correlation and an 

inability to produce wide enough horizontal variability of κ.  For instance, the 

  value appears, by construction, in every column. To bring NSQR to optimal terms 

with the direct diagnosis, we found that    should be substantially reduced from 4000 

to under 2000      , eq. (31). Our suggested closure (d), the combination of VMHS 

and NSQR is an improvement over the constant reference value. It suffers from the 

symptoms of NSQR that unwarranted high estimations appear in regions that should 

have little eddy activity. Because of this, EG (a) makes less extreme errors, and has a 

more uniform bias, but may have a slightly wider spread a low values. EG also 

produced in general too strong diffusivities, and we suggest lowering the tuning 

parameter c (31) from 2 to 1.5.   
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Figure 4.11; Correlations between κ raw and the individual closures for depth 

averaged values. Each point in space produces a value from both the closure and 

direct calculation, mapped above. A tighter diagonal line means higher 

correlation. From top left to bottom right: a) EG (0.63), b) NSQR (0.49), c) VMHS 

(0.71), d) VMHS/NSQR (0.56). The numbers in parenthesis are the associated 

correlation coefficients.  

 

In verdict of the depth-averaged case, VMHS (c) seemingly performs best with a 

correlation coefficient of 0.71, whereas EG comes second with 0.63. The depth 

modified VHMS seems to be an improvement from using a constant reference value. 

For horizontally averaged cases, on the other hand, VMHS appears inadequate due to 

its depth independence. Many modeling communities have acknowledged the 

importance of vertically varying mixing intensities and have progressed to other 

closures. In this regard, the EG closure indeed seems a good candidate. But then, 

comparing Figure 4.8a and Figure 4.8b, it appears that the direct diagnosis show a 

depth decaying trend that resembles that of NSQR (and VMHS/NSQR) more than  

EG. Here our suggested combination closure may prove its use. 
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All correlation coefficients are summarized in table 4.1, including comparisons for 

surface values and correlation with the    - distribution. Each case are tested with 

two different amounts of spatial smoothing, 3×3 and 20×20 grid points. It is 

reasonable to consider scale-averaging over such magnitudes, since coarse resolution 

models appropriate for this type of parameterizations require averaged, large scale 

fields. But excessive smoothing may conceal fine scale similarities between 

divergence fields, motivating a test of both. 

 

      surface      depth-avg     surface     depth-avg 

 Lo Hi Lo Hi Lo Hi Lo Hi 

EG 0.45 0.67 0.36 0.63 0.33 0.57 0.31 0.56 

NSQR 0.30 0.40 0.33 0.49 0.29 0.50 0.22 0.34 

VMHS 0.44 0.66 0.47 0.69 0.34 0.59 0.36 0.63 

VMHS (FS) 0.44 0.67 0.48 0.71 0.34 0.59 0.37 0.64 

VMHS/NSQR 0,43 0,70 0,34 0,55 0,36 0.62 0,28 0,47 

VMHS/NSQR 

(FS) 
0,44 0,71 0,35 0,56 0,37 0,63 0,28 0,46 

Table 4.1; Diagnosed eddy diffusivities are compared to diffusivities obtained from the 

closures and presented in terms of correlation coefficients. In each case, both surface and 

depth averaged output are compared using low and high effective spatial smoothing on each 

field. 

 

The forth column in Table 4.1 corresponds to the comparisons made in association 

with Figure 4.10 and 4.11, that is, depth-averaged fields and high data-smoothing. 

The proposed VMHS/NSQR closure obtains the higher correlation in terms of surface 

comparison to either diagnosed field, but lower quite low for the depth averaged case. 

In general terms, the closures show a better correlation with the      field.  Specific 

correlations for the vertical profile (horizontal average) are not shown, but the NSQR-

based closures are the only ones with significant correlation, as illustrated by Figure 

4.8. Note also that the Ferrari-Nikarushin suppression in most cases slightly improve 

the correlation coefficient. 
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4.3 Trial B:  Comparison by divergences 

 

Reciting eq. 37, taking the variance on each side of the horizontal skew flux equation 

(22) yields, 

   (     ̅)           ̅̅ ̅̅ ̅ (47)  

As discussed in Section 2.4, assessing the divergences of the fluxes and the 

parameterization will, by definition, eliminate the complications in a diffusivity 

diagnosis caused by rotational components that may be present in the eddy flux field. 

In this section we evaluate which input for κ that produces a best fit for the divergence 

of the downgradient parameterization (47) compared to the divergence of the eddy 

density fluxes. Seven different input values are tested including the four closures, the 

raw diagnostic, the MG diagnostic and a constant value.  

Figure (4.12) displays divergences of the direct eddy fluxes        ̅̅ ̅̅ ̅̅  in the upper left 

pane, and the divergence of the downgradient parameterization   (     ̅) for  

      
16      and     respectively. 

 

 It is immediately apparent that the flux and parameterized fields are highly similar (in 

contrast to findings in other studies, e.g., Nakamura and Chao, 2000;. Griesel et al., 

2009. This provides confidence to the validity of the down-gradient (horizontal skew 

flux of density) parameterization of mesoscale eddies.  More specifically, one should 

notice the especially striking similarity between the divergence of the eddy fluxes and 

the downgradient parameterization using the raw diagnostic of kappa (Figure 4.12a; 

upper left, bottom left). This also raises confidence to the use of our (raw) diagnostic 

as a good estimate, and in turn an appropriate frame of reference for comparing and 

evaluating optimal quantifications of eddy diffusivities. If the raw diagnosis were 

indeed highly corrupted by rotational components, the correlation between the 

divergence-fields would be expected to subside considerably. 

 

                                                 

16        was set to 200 as a rough estimate. In respect to correlation coefficients, this number is irrelevant. 
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Figure 4.12a; Shown are the surface values of divergences of eddy density fluxes        ̅̅ ̅̅ ̅ (upper 

left), and divergences of the downgradient parameterization   (     ̅) for κ as constant values 

(upper right), direct raw diagnostic (bottom left) and direct MG diagnostic (bottom right). 

Divergences are calculated (from the time averaged fields) at the end of the integration period. 

 

A surprisingly decent correlation obtained by the use of constant diffusivities (Figure 

4.12b) indicates that the horizontal potential density gradient is the dominating factor 

in the left hand side of (47). It is obvious that, if diffusivities are generally positive, a 

choice of positive constant κ will generally produce divergence/convergence at the 

right places, but will most likely over- or underestimate the amount. 

Hence, as expected, the closures (Figure 4.12b) also produced divergence fields 

resembling that of the eddy fluxes. To a varying degree they all describe the 

convergences along the WSC and the NAC belt south of the Faroe Islands, bordering 

to regions of large values of opposite sign. The strong coastal divergences are also 

prominent in the result.  One of the pronounced features common for all cases is the 

trail of negative divergences (convergences) that appear in the NAC and WSC 

regions. This can be, ignoring salinity,  attributed to the eddies‟ function of 
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Figure 4.12b; Shown are the surface values of the downgradient parameterization ∇  (  ∇  ̅) 

for κ as EG (upper left), NSQR (upper right), VMHS (bottom left) and VMHS/NSQR (bottom 

right). Divergences are calculated monthly and averaged. 

 

 

distributing heat to surroundings
17

, effectively cooling the warm currents and 

ultimately acts to increase local density. This process appears as a convergence of 

eddy fluxes in the warm current regions. Oppositely, strong divergence of eddy fluxes 

appear along parts of the costs of Greenland, Norway and Netherlands, suggesting that 

eddies contribute to warm up cold coastal waters.  

 

The divergences as seen in Figure 4.12 are surface values computed at the very end of 

the integration period based on the obtained (monthly averaged) fields of κ and eddy-

fluxes. 

                                                 

17 In the cold Nordic Seas, salt is a significant contributor to the non-linear equation of state. But density fluxes is 

still dominated by temperature changes. 
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Figure 4.13; Correlations between the divergence of the eddy fluxes, ∇       ̅̅ ̅̅ ̅, and the 

downgradient parameterization using various inputs of the mixing parameter κ. From top left, 

EG, NSQR, VMHS, VMHS/NSQR, raw, MG. The data are smoothed over 20 grid-points 

(associated with the rightmost column of Table 4.1.  

 

Figure 4.13 illustrates the correlations obtained from this approach. To test closures 

and diagnoses under different circumstances, also divergences for both surface and 

depth averaged κ- and eddy fields are computed monthly and averaged over. The 

results of these different procedures for obtaining the divergences are summarized in 

Table 4.2 as correlation coefficients between the eddy flux and the downgradient 

parameterization with different input of κ. Once again, two different levels of spatial 

smoothing are applied, 3×3 (Lo) and 20×20 (Hi) grid points, for each case. The latter 

eliminates all signs of mesoscale physics, but as appropriate for coarse resolution 

models, only the large scale characteristics of the field is retained. The presented 

correlation coefficients demonstrate that the raw diagnostic of κ gives the best, and 

surprisingly strong, correlations based on divergences. Indeed, they are not perfect, 

and it may still exist another distribution of κ that would produce even higher 

correlations. But the fact that     , with rotational fluxes irrelevant due to the 

divergence, still grants better correlations than    , indicates that the MG method did  
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Table 4.2; Correlation coefficients between the divergence of direct eddy fluxes and the 

divergence of the parameterization using different input values for the diffusion coefficient. 

Case a) shows the mean of all divergences calculated monthly (based on depth averages) for 

surface variables  Case b) is the same, but instead of depth averages, surface values are used. 

In case c), the divergences are calculated at the end of the integration period (the eddy fluxes 

and direct diffusivities are still estimated each month). The Lo and Hi case refers to the 

amount of spatial smoothing done before estimating the coefficients, where Lo is 3 grid points 

and Hi is 20 grid points.  

 

not work properly in this particular case (at least in terms of arranging for a better 

diagnosis by removing rotational components). EG and VMHS/NSQR, the two 

closures being both horizontally and vertically dependent, seem to perform equally 

well in general, with EG doing better on surface estimates VMHS/NSQR better in 

other depth-averaged cases.  

 

One should be cautious when interpreting correlation coefficients in plain numbers. 

Since they are computed using a covariance (product of deviations from the 

respectable means), a set of evenly distributed numbers will generally score better 

than numbers varying with correct magnitudes (of varying sign) but also slightly 

displaced or “out of phase”. This may have granted case Const., and to a certain 

degree NSQR, better ratings than deserved, and adversely with the somewhat noisy 

   , also suffering from some extreme peak values. Hence one should always use 

 Divergences calculated each month Divergences at end of integration period 

 a) depth-avg b) surface c) depth-avg d) surface 

Smoothing Lo Hi Lo Hi Lo Hi Lo Hi 

EG 0.41 0.54 0.58 0.77 0.30 0.40 0.54 0.76 

NSQR 0.39 0.55 0.57 0.83 0.39 0.58 0.51 0.70 

VMHS 0.36 0.49 0.62 0.81 0.36 0.49 0.63 0.80 

VMHS (FS) 0.36 0.49 0.62 0.80 0.37 0.51 0.64 0.81 

VMHS/NSQR 0.37 0.49 0.52 0.79 0.34 0.52 0.52 0.69 

κ raw 0.46 0.55 0.71 0.90 0.52 0.76 0.75 0.94 

κ MG 0.46 0.52 0.68 0.88 0.33 0.46 0.69 0.92 

Const. 0.34 0.49 0.64 0.81 0.32 0.43 0.64 0.74 
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correlation coefficients complimentary to more direct representations of data, e.g., 

Figure 4.12.  
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  Section 5: Summary and discussion 

 

5.1 General eddy distribution in comparison with the closure schemes. 

The diffusivity parameter κ, appropriate for GM stirring (skew flux) and isopycnal 

diffusion, were diagnosed directly from the output of an eddy resolving model in 

order to learn more about the effect of mesoscale eddies associated parameterizations. 

Climate models are highly sensitive to their SGS operators, so the distribution of 

diffusivities is consequently pivotal to the integrity of predictions. With this in mind, a 

selection of closures designed to provide a large scale, flow-dependent approximation 

of the distributions were examined and tested in comparison with diagnoses taken in a 

high resolution domain.  

 

Diagnoses affirmed that diffusivities have a vertical decay and strong topographic 

dependencies. More energetic eddies (and thus higher diffusivity) forms along 

boundary currents where gradients and horizontal velocity shears are large (here depth 

averaged diffusivities have magnitudes of κ~800     , intensifying to well over 

κ~2000      at the surface). Under such conditions barotropic instability may supply 

energy for eddies. Strong currents tend to „shed‟ eddies, meaning, vortices may be 

formed and advected into regions with little instability (Vallis, 2005), which may be a 

contributory reason for the sturdy presence of diffusivities in the Barents Sea. Weak 

diffusivities, κ~50     , are observed in deep water basins where EKE is low and 

stratification dominates shear forces. Surface values in such regions takes on a typical 

magnitude of 300     , and could be anticipated to be heavily influenced by wind-

forcing. 

 

The various closure schemes were evaluated by their performance by comparing them 

to a), the direct diagnostic, and b), the divergences of eddy fluxes and the 

downgradient parameterization. Some adjustments were made to adapt them to the 

conditions of our model, discussed in Section 2.3.  
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The well-used VMHS (featuring depth-constant diffusivities) closure proved its 

advantage in the depth-averaged case. But obviously enough, vertical distribution and 

surface magnitudes were lacking. Diagnoses suggest that diffusivity should be high in 

upper layers and decaying with depth, consistent with observational data
18

. The utility 

of VMHS thus directly depend on how sensitive solutions are to horizontal contra 

vertical distribution of diffusivities. The answer to this may depend on the particular 

model and its domain, opting for choosing the most fitting closure, but in general we 

should expect that the vertical distribution plays a crucial role for evolution of the 

water masses. In respect of both observational physics and our result, we can at best 

only recommend this closure under special circumstances where depth varying mixing 

is considered to be of secondary importance. The closure EG seems to be the next best 

choice in light of the depth-averaged case, with a balanced bias and fewer extreme 

misses than the two remaining closures (Figure 4.10). Compared to our calculations, 

the tuning parameter c could be reduced from 2 to 1.5. A strange artifact with 

increasing near-bottom diffusivities appeared (Figure 4.8), likely formed because to 

the vertical velocity shear. As there is no outstanding argument for eddy diffusivities 

to increase near topography, and it did not show up in the direct diagnostic, we 

conclude with this being unphysical.  This should however be a trivial problem to 

overcome during implementation. 

Eden et al. 2007 finds NSQR to be less accurate in horizontal distribution than VMHS 

and EG, consistent with results in Section 4. At the same time, we found that the 

constant   =4000 
 

 ⁄  vastly overestimated diffusivities on general basis (high values 

to appear in every column of water are not expected). We suggest reducing this to 

under 2000  

 ⁄ . The overestimation was despite the fact that we used a denominator 

(    ) that was slightly higher than intended (the buoyancy inside the pycnocline). 

NSQR is nevertheless a simple closure that acutely reconstructs the amount of vertical 

decay observed in the diagnosis, better than the EG closure, which reduces κ too 

quickly beneath the surface layer. Again, depending on how sensitive climate models 

are on horizontal contra vertical spread of κ, our suggested closure VMHS/NSQR, 

                                                 

18 Treguier et al (1997) also presents a theory based on linear baroclinic instabilities in which the diffusivity 

obtains both a horizontal and vertical dependence. 
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i.e., instead of assigning the constant value    in NSQR, using the horizontal spread 

given by VMHS with a doubled tuning parameter, appears as a solid choice. 

 In verdict of the direct diagnosis comparison, it turns out that no closure is 

outstandingly and generally better than the other in all traits, so precaution must be 

practiced when choosing a closure based on the dynamical domain of the model. 

Based on the direct comparison, we concur with Eden et al. 2008 that the EG closure 

may seem to be a better solution than both VMHS and NSQR. We point out however, 

that both of these two closures have advantages over EG in the horizontal and vertical 

(respectively). We encourage therefore further consideration of the combination 

closure VMHS/NSQR and advice for a future closure performance tests on general 

circulation models to include this kind of closure. At the same time we point out that 

all closures have weaknesses and biases compared to the direct diagnostic. One of 

these defects were addressed by a variant of the Ferrari-Nikarushin suppression in 

which we assert to in this study. It did not eliminate, but reduced, the problem with 

overestimation along topographic ledges and in core currents, and visibly (but subtly) 

improved correlation coefficients (it had seemingly most effect on VMHS/NSQR), 

both in the direct comparison and in the divergence case. 

NSQR, despite being the most inaccurate closure concerning distribution of κ, 

produced divergences surprisingly close to the divergences of the eddy-fluxes (Figure 

4.11-4.13, Table 4.2). It was debated whether smoother values could have been 

advantageous concerning the correlation coefficient, and this being the reason why 

Const. (and to a certain extent NSQR) attain relatively high correlation coefficients 

despite the distinct deviation from diagnosed distributions. From the correlation 

coefficient alone, Const. actually seems a respectable choice, considering its 

simplicity. Even so, Wright (1997) showed that results in a global model were 

improved by the advancement to non-constant diffusivities, in that case VMHS
19

. The 

divergence experiment also seems to support this closure. 

 

 

                                                 

19 Prompting the Hadley Centre to employ this scheme in climate simulations (Gordon et al., 2000). 
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5.2 On diagnostics and theoretics. 

We emphasize again that these conclusions are based on the assumption that the 

obtained diagnostics are amply correct, meaning, that they reflect the essential 

physical properties we study.  

 

First one may ask how much of the clutters and blotches of diagnosed diffusivities in 

(Figure 4.4) is numerical noise and how much is actual physics. In other words, would 

the noisy field compromise the credibility of the diagnosis? There is no preceding 

argument that the diffusivity present in the real ocean should take on a more constant 

value with smoother gradients (as turbulence behaves erratically, so can eddies on 

various scales). An inspired guess could be that the noise springs from bit of both; 

erratic eddy mixing as well as spurious noise that partly masks the signal. Regardless, 

if one were to use this kind of diffusivity diagnostic (as shown in Figure 4.4) a priori 

parameter choice for SGS parameterizations in coarse resolution models, the fields 

will have to be thoroughly smoothed. That is, local spatial averages converted into 

point values on the coarser grid. Averaging the solutions over reasonable scales 

should hopefully pick up the essential physics, eliminating the noise and consequently 

the need to explicitly address this question. 

 

More importantly, one must be vary of the challenges arriving with interpreting direct 

diagnostics of diffusivities of the assumptions and complications it involves. We have 

assumed and addressed perturbations from a defined temporal mean flow as an effect 

of mesoscale eddies, and expect the horizontal downgradient parameterization to hold. 

In addition there are non-divergent rotational fluxes that may warp the integrity of 

estimates. In earlier studies diagnoses showing large and dominating negative 

diffusivities and poor flux-gradient correlations have been attributed to the presence 

of rotational fluxes (Bryan et al., 1999).  

In our diagnostic using the raw eddy fluxes, we observed only occasional negative 

fluxes and otherwise physically plausible amounts of κ (despite the influence of 

rotational fluxes expected to thwart estimations).  The dominating positive diagnosis 

is a consequence of the prevailing trend of eddy fluxes being directed down the mean 

gradient, ensuing after physically moderate spatial smoothing of the vector fields.  
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Utilizing the MG-method (Medvedev & Greatbatch 2004, Eden et al., 2006) in order 

to remove rotational components and retain residual divergent fluxes only, we found a 

general increase of magnitudes but also a rise of intense negative diffusivities in 

confined regions. This result was unexpected, seeing that getting rid of negative 

diagnoses of diffusivities has been a key motivation for attempts to separate divergent 

and rotational fluxes. There is not a straightforward reason for this inconsistency with 

e.g., Eden et al (2006). It is worth noting that in our case, estimations of      

appeared as less noisy and more physically plausible when running the diagnosis after 

each temporal „averaging window‟, i.e., the temporal mean to which we assumed 

perturbations to be eddy activity, and thereafter taking a final average of all      

assimilated at the end of the five year run. There might have been a difference in our 

procedures and those of Eden et al. concerning this, but large regions of intense 

negative regions were not registered by our diagnostics after any attempted averaging 

routine. 

Another source of aberration could be the different model and model type used in our 

study. Where geopotential models are extensively used in similar studies, an advanced 

terrain-follow coordinate model (ROMS) produced our data. Even models of the same 

coordinate system have distinctive dynamical properties, and differences in the source 

data could be a contributory reason for the deviating results. General non-existant 

negative diffusivities could also be a consequence the high resolution domain itself. 

More detailed topography (and starker gradients) may prompt eddy fluxes to become 

more downgradient, compelling (44) to produce positive κ.  

 

A question that presents itself is how we interpret the negative diffusivities that 

persevere in all experiments. Certainly a large expanse of negative diffusivities would 

necessarily be unphysical. But in terms of stirring, it is not unthinkable that, in certain 

regions and topographic conditions, that mesoscale eddies could work towards  

increasing APE  by consuming MKE, maintaining tilting isopycnals. In this case, a 

horizontal up-gradient eddy-flux could reside and generate negative diffusivities. A 

negative (positive) vertical eddy density flux     ̅̅ ̅̅ ̅̅  is associated with eddies releasing 

(piling up) available potential energy (Eden et al., 2006). Figure 4.13 reveals certain 
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areas of positive vertical eddy flux. In a few places these seem to loosely cohere with 

regions of negative κ (Figure 4.5). The prospect of physical negative stirring 

beseeches attention in future studies, but is beyond the scope of this paper. 

 

Figure 4.13; Vertical eddy density flux     ̅̅ ̅̅ ̅̅ .20  Negative values are associated with the release of APE due to eddy 

activity.  

 

To avoid the complicity and question of the rotational fluxes, we employed the 

divergences of the eddy fluxes and the parameterization. The flux-gradient correlation 

of the raw diagnosis appeared even more evident after employing the divergences of 

the eddy fluxes and the divergences of their downgradient parameterization. This is in 

contrast to several previous studies (e.g., Nakamura and Chao, 2000). Griesel et al., 

(2009) report of no evidence of correlation, even after various spatial averages, and 

question the validity of associating mesoscale eddies with a downgradient assumption. 

We emphasize based on observations in this study that the (isotropic) horizontal 

downgradient parameterization indeed seem to capture the general effect of the eddy 

fluxes. We note again however, that averaging over a range of eddy scales through 

spatial smoothing, improved the correlation. Hence, flux fields is seemingly another 

important factor, in addition to rotational fluxes, that may unsettle a clear 

manifestation of downgradient relationship.  

 

The high correlation of the divergences of fluxes and parameterization obtained by 

using the      diagnosis, strongly supports the assumption that      is fair estimate 

                                                 

20 The vertical eddy flux is estimated as     ̅̅ ̅̅ ̅̅   ̅ ̅    ̅̅ ̅̅ . 
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of the actual distribution of the diffusivity coefficient, and an appropriate reference 

point for comparing the closures. In consequence, this suggests that rotational fluxes 

had less influence than expected on the direct diagnosis in this particular experiment. 

Actually,     that theoretically contains less rotational components, performed worse 

in premise of divergences (but still better than any of the closures), is a strong 

indicator that the MG-method did not work as intended in our experiment, despite 

several approaches and efforts to produce a "good" result. 

 

Its noisiness may be a contributory reason for lower correlation scores, but it is also 

visible in Figure 4.12 that the raw field indeed correlates more. In addition to the 

implementation differences discussed above, one may speculate that be that the MG-

method principally work over larger regions of negative diffusivities (depending on 

the size or scale of the variance fields), with the defect of inducing local amounts of 

negative diffusivities. In such a case, our limited region model, with few negative 

regions to begin with, could be a contributory cause of this unexpected development. 

 

Griesel et al. raises the concern that if the rotational component is vastly dominating 

the divergent component (Bryan et al., 1999), extracting the small residual difference 

will be highly sensitive to small errors and require very precise methods. So even if 

perfectly implemented, the MG method is an approximation that does not necessarily 

remove all rotational components, attesting to that the task of describing the residual 

fluxes and their relative magnitudes correctly may in general be difficult. Alas, Eden 

et al., (2006, 2007) bring little specifics on the implementation and no other 

independent studies utilizing the MG method directly were found. It is however clear 

that extracting the divergent component requires high quality data, precise 

implementation methods and a solid physical theory.  

 

On a different note, it has earlier been argued (Rix & Willebrand, 1996) that the 

timeframe of five years may be too short to get a good estimate of the eddy fluxes. 

This study indicates otherwise, and we emphasize that even shorter time series gave a 

decent representation of the results (granted the needed spatial smoothing). This 

assumed temporal sufficiency is consistent with Roberts and Marshall (2000), who 
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noted that the five-year mean indeed resembled and were representative for a twenty-

year mean. This seems only natural, as the relevant time-scales of mesoscale eddies 

we investigate range from three weeks down to under a week (ref []). An adequate set 

of such processes should be captured in a five year mean. An extended period of time 

may however slightly reduce the need for spatial averaging or smoothing of data, but 

we see no practical (or even theoretical) incentive for this; the downgradient nature of 

eddy induced fluxes appeared clearly though physically reasonable use of smoothing 

windows. 

 

 

5.3 Summary and final remarks. 

 

In summary, this study shows a reasonable diagnostic of eddy diffusivities found 

using raw eddy fluxes (as confirmed by the divergence test), hence assumed to be 

adequate  as a reference for comparison of the four tested closures. VMHS produces 

the best horizontal distributions but do not respect the vertical profile of eddy kinetic 

energies (and may be useful in for instance shallow simulation domains). EG and 

VMHS/NSQR have a horizontally and vertical advantage compared to each other, 

respectively, and score about equally well on the correlations of divergences. We 

encourage the suggested combination-closure as a possible candidate to be tested in 

coarse resolution experiments. NSQR, albeit its poor horizontal distribution of 

diffusivities, did produce commendable divergence fields. We cannot from these 

results dismiss any of the four as, in general, inferior to another. The utility of each 

closure seem to be situational and should be chosen for the specific application.  On a 

different note, we recommend the use of a Ferrari-Nikarushin suppression when 

employing flow dependent closures as VMHS or EG, that slightly reduced the 

problem with overrepresented diffusivities along main currents and topographic 

slopes and increased correlations.  

 

It was however found that the suggested tuning parameters for the closures were 

overestimated, especially for the NSQR case. Based on the result of diagnoses herein, 

a constant value of κ~400      seems more plausible than the commonly seen  
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κ~800     . If our more moderate diagnoses of diffusivity magnitudes are domain-

specific or reflect a general trend in the World Ocean, cannot be told from these our 

calculations. Nonetheless, it prompts for the use of high resolution analogues of 

models employing these closures to estimate the optimal value of tuning parameters 

prior to the coarse resolution run. Alternatively, as an approximation, it could prove 

useful to exert the high resolution diagnostic directly as a time independent 

distribution, if the general flow characteristics of the system is assumed to undergo 

little change during the integration time. For climate models of prolonged integration 

time where this is not the case, a periodically high resolution estimation could be 

considered. 

Other implications of this study include affirmation of the validity of the horizontal 

downgradient assumption of eddy density fluxes, shown for both the fluxes 

themselves and the divergence.  

Furthermore, it was discussed practical and theoretical difficulties of determining 

rotational and divergent parts using the MG method, or any method per se. If the 

rotational component proves to vastly dominate the divergent (at least in cases it 

does), approximations like the MS or MG theories may be inadequate to determine 

point values of residual fluxes.  This study indicated however, that producing 

physically reasonable diagnoses of diffusivities using raw fluxes is possible if the 

eddy-fluxes are spatially smoothed over appropriate scales. A hypothesis of Griesel et 

al. (2009) speculates if averaging over certain spatial scales may cause some 

rotational components to cancel out. If possible, this may have been a contributory 

reason for the seemingly mild influence of rotational fluxes on our diagnosis of the 

eddy mixing parameter κ. 

 

It has been a strong focus on the topic of diffusivity diagnostics from high resolution 

ocean models. We encourage future assessment as to why the eddy fluxes seemingly 

behaved so differently in this study, with strong flux-gradient correlations despite the 

presumed presence of rotational fluxes. More specifically, this type of model and 

configuration could be applied to other regions and diffusivities assessed in similar 

studies to compare physical diagnostics from different approaches and shed more light 

on the subject. Is the appropriate spatial smoothing of eddy fields defined as 
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deviations from monthly temporal means always able to produce plausible diagnostics 

of κ (using these model configurations) regardless of rotational fluxes, or is it 

characteristic for the Nordic Seas? The same question applies to the seemingly non-

functional MG-theory in our experiment. Would it work on larger domains as 

exercised in Eden et al., (2006) and Eden, (2007), or would a different model and 

configuration produce any different diagnoses in the Nordic Seas? Would we find the 

same magnitude of diffusivities as diagnosed by Eden et al (2006) in the North 

Atlantic if we applied the procedures practiced here? 

 

A wide spectrum of models and observations is needed to solve the mesoscale 

problem, and studies should aim to work synergistically. As mentioned in the 

introduction, the current study is more theoretical than the experiments of Eden et al., 

(2008), in the sense that we do not know which diffusivity diagnose that actually 

works the best before having tested it in a climate model, which of course is the final 

goal with these estimates; better model input. Comparing the results of the climate 

model with climatology, however, may pose too many arbitrary factors to give 

sufficient information specifically about the tested closure. One of the factors 

overshadowing this is, of course, is the dynamics of the climate model in itself. To 

rule such factors out one could study satellite data or actual drifters in the ocean, 

something that brings with it its own difficulties and caveats. 

 

Each approach of research contributes with its own advantages and uncertainties, and 

we should aim to use several approaches toward each goal. The result of this study 

will hopefully be of some use as a reference for future research of mesoscale 

dynamics in the Nordic Seas. 
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